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Single cells vary widely in their growth rates, a fundamental pheno-
type that reflects biochemical and biophysical differences between 
cells and may govern their relative abundance within a population. 
From bacteria to unicellular eukaryotes to metazoan cells, even genet-
ically identical cells may grow at different rates owing to a combina-
tion of intrinsic molecular noise and various deterministic behavioral 
programs1–5. This variation is not observable via population-based 
growth assays but has important consequences for human health. 
For example, cancer cells within an individual may vary drastically in 
proliferative potential, with subsets capable of continuous cycling and 
others primarily arrested6. Similarly, growth-rate variation in bacterial 
populations can dictate the efficacy of antibiotic treatments, as slow- 
or nongrowing cells tend to be more resistant to antibiotics7–9. Despite 
its importance, precise and rapid quantification of single-cell growth 
rates remains technically challenging. One approach is to measure 
a cell’s outline in a microscopic image and calculate its volume on 
the basis of assumptions about its three-dimensional shape—e.g.,  
measuring the length of rod-shaped bacteria and assuming the cross-
section stays constant9–12 or measuring yeast cell boundaries and 
assuming the cell is a prolate ellipsoid13. However, it is not clear how 
often these shape assumptions are violated, and these methods are 
generally not usable for irregularly shaped cells. Another approach, 
quantitative phase microscopy, can be used to estimate a cell’s dry 
mass over time14,15 but, like other available platforms, it cannot per-
form precise, single-cell growth measurements on a variety of samples 
with high temporal resolution.

Recently, inertial methods for measuring single-cell growth have been 
developed on the basis of resonating micromechanical structures16–18, 
some of which  provide much higher precision than microscopy but 
are hindered by low throughput. These methods exploit the fact that 
a micromechanical resonator’s natural frequency depends on its mass. 
Adding cells to a resonator alters the resonator’s mass and causes a 
measurable change in resonant frequency. One such class of resonator  
mass sensor is the suspended microchannel resonator (SMR), which 
consists of a sealed microfluidic channel that runs through the inte-
rior of a cantilever resonator. The cantilever itself is housed in an 
on-chip vacuum cavity, reducing damping and improving frequency 
(and thus mass) resolution19. As a cell in suspension flows through 
the interior of the cantilever, it transiently changes the cantilever’s 
resonant frequency in proportion to the cell’s buoyant mass (the mass 
of the cell minus the mass of the fluid it displaces). In water, a cell’s 
buoyant mass is roughly proportional to (and is typically about one-
quarter of) its dry mass20. SMRs are very precise, weighing single 
mammalian cells with a resolution of 0.05 pg (0.1% of a cell’s buoyant 
mass) or better15–17. It is possible to measure a cell’s growth rate by 
repeatedly flowing the cell back and forth through the SMR cantilever, 
but this method is limited to one cell at a time. This limitation in 
throughput has prevented wider application of SMRs across a range 
of biological and clinical efforts.

Here we introduce an SMR-based technique that enables high-
throughput growth-rate measurement while retaining the precision 
of the SMR. We use an array of SMRs fluidically connected in series 

High-throughput measurement of single-cell growth 
rates using serial microfluidic mass sensor arrays
Nathan Cermak1,12, Selim Olcum2,12, Francisco Feijó Delgado2,3, Steven C Wasserman3, Kristofor R Payer4,  
Mark A Murakami5, Scott M Knudsen3, Robert J Kimmerling3, Mark M Stevens6, Yuki Kikuchi4,11, Arzu Sandikci2,  
Masaaki Ogawa7, Vincent Agache8, François Baléras8, David M Weinstock5,9 & Scott R Manalis1–4,10

Methods to rapidly assess cell growth would be useful for many applications, including drug susceptibility testing, but current 
technologies have limited sensitivity or throughput. Here we present an approach to precisely and rapidly measure growth rates 
of many individual cells simultaneously. We flow cells in suspension through a microfluidic channel with 10–12 resonant mass 
sensors distributed along its length, weighing each cell repeatedly over the 4–20 min it spends in the channel. Because multiple 
cells traverse the channel at the same time, we obtain growth rates for >60 cells/h with a resolution of 0.2 pg/h for mammalian 
cells and 0.02 pg/h for bacteria. We measure the growth of single lymphocytic cells, mouse and human T cells, primary human 
leukemia cells, yeast, Escherichia coli and Enterococcus faecalis. Our system reveals subpopulations of cells with divergent 
growth kinetics and enables assessment of cellular responses to antibiotics and antimicrobial peptides within minutes. 

1Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 2Koch Institute for Integrative Cancer 
Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 3Department of Biological Engineering, Massachusetts Institute of Technology, 
Cambridge, Massachusetts, USA. 4Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 5Department 
of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. 6Department of Biology, Massachusetts Institute of 
Technology, Cambridge, Massachusetts, USA. 7Innovative Micro Technology, Goleta, California, USA. 8CEA-LETI, Minatec Campus, Grenoble, France. 9Broad Institute, 
Cambridge, Massachusetts, USA. 10Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 11Present address: 
Hitachi High-Technologies Corporation, Ibaraki-ken, Japan. 12These authors contributed equally to this work. Correspondence should be addressed to S.R.M. (srm@mit.edu).

Received 3 November 2015; accepted 10 August 2016; published online 5 September 2016; doi:10.1038/nbt.3666

http://dx.doi.org/10.1038/nbt.3666
http://www.nature.com/naturebiotechnology/


©
20

16
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�	 advance online publication  nature biotechnology

A rt i c l e s

and separated by ‘delay’ channels (Fig. 1a,b). These delay channels 
give the cell time to grow as it flows between cantilevers. After a cell 
exits a cantilever, other cells are free to enter it and be weighed. As a 
result, we are not limited to flowing only one cell through the array at 
a time but can have many cells flowing in a queue. This enables high-
throughput precision growth measurements across a wide array of 
suspended cell types. Here we demonstrate a proof-of-concept serial 
SMR array and show that it can measure lymphoid cell lines, primary  
mouse T cells, primary human lymphocytes and acute myeloid leuke-
mia cells, Saccharomyces cerevisiae, E. coli and E. faecalis. We dem-
onstrate previously unrecognized variability in growth kinetics and 
perform ultra-rapid assessment of susceptibility to antibiotics and 
antimicrobial peptides.

RESULTS
Device design
Before designing the serial SMR arrays, we first considered how the 
number of buoyant mass measurements (k), measurement resolution 
(σmass) and the time between measurements (∆t) affect the resolution 
of the mass accumulation rate. We derived a simple relationship for 
the standard error (resolution) of the mass accumulation rate in terms 
of these three quantities: 

s
s

massaccumulationrate
mass≈

12
1 5k t. ∆

(see Supplementary Note 1 for derivation).
For serial SMR arrays, ∆t can be controlled by adjusting the flow 

rate. Therefore, apart from guiding our designs, equation (1) also 
illustrates that we can easily tune the device’s behavior to trade 
throughput for resolution by changing the flow rate; i.e., faster flow 
yields higher throughput but poorer resolution, and vice versa for 
slower flow (Supplementary Note 1).

In this work, we designed and validated two serial SMR arrays 
with different channel dimensions—one for larger cells (mammalian 
cells and yeast, 15 × 20 µm in cross-section) and one for bacteria  
(3 × 5 µm). Despite the differences in scale, the operation and design 
concepts for these devices are essentially identical.

For studying mammalian and yeast cells, which often accumulate 
mass at rates of 1–10 pg/h (ref. 16), we sought a mass accumulation rate 
resolution of <1 pg/h. Using the expected mass noise (σmass ~0.05 pg for 
similar single-SMR devices), we designed a device consisting of 12 SMRs 
fluidically connected in series by delay channels ~50 mm long (Fig. 1b). 
At typical SMR flow rates, ∆t would be about 1.5 min, and the expected 
mass accumulation rate resolution would thus be 0.17 pg/h, result-
ing in a relative precision of 1–10%. We designed our small-channel  
devices similarly, but with 10 cantilevers and with the expectation  
of operating at faster flow rates (∆t ~30 s between SMRs).

To obtain the best possible mass resolution (σmass), we excited 
cantilevers in the second bending mode (Fig. 1c) so that the  
measured mass would not depend on the cell’s flow path21, thus 
avoiding a fundamental source of error for SMRs operated in 
the first mode. However, because the second mode is at a higher  
frequency, and the tip follows an arc with a shorter radius than 
in the first mode, cells often became trapped at the cantilever  
tip owing to centrifugal force22,23. This problem was exacerbated 
at the low flow rates (and therefore reduced drag forces) neces-
sary for sufficient delay time between cantilevers. To overcome 
the trapping problem, we shortened the interior channel to extend 
only as far as the vibration node, where the centrifugal force is 
minimal (Fig. 1c).

(1)(1)

So that each cantilever could be operated individually without 
coupling or interacting with other cantilevers, we used frequency- 
division multiplexing. We designed each cantilever with a unique reso-
nant frequency roughly 30 kHz apart from that of its neighbors (Fig. 1d,e),  
which we controlled by varying cantilever lengths from 380 to 470 µm 
(large-channel devices) or from 180 to 215 µm (small-channel devices). 
This frequency spacing is conservative, as we estimate on the basis of 
Carson’s rule24 that the spacing could be reduced to less than 1 kHz in 
future devices, enabling operation of hundreds of cantilevers simulta-
neously within the frequency band used here (700–1,100 kHz).

Device operation and data analysis
To simultaneously measure the resonant frequency of all k cantilevers 
in the array, we first needed to measure the superposition of all the 
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Figure 1  Design and implementation of the serial SMR array. (a) Simulated  
data showing frequency peaks originating from single cells flowing through 
a series of SMRs (cantilever mass sensors) separated by delay channels.  
Cells grow as they traverse the array. After frequency peaks originating  
from the same cell are grouped, that cell’s mass accumulation rate can  
be obtained by regressing its buoyant mass versus time. Because many 
cells can traverse the array simultaneously, this device can achieve  
much higher throughput than a single SMR device. (b) Rendering of  
a large-channel serial SMR array device showing delay channels and the 
cantilevers (magnified in inset micrograph). (c) Side-view illustration  
of an SMR vibrating in the second bending mode. To prevent cells from 
getting trapped at the end of the cantilever by large centrifugal forces,  
the internal microfluidic channel (blue) extends only to the node of  
the second eigenmode. (d) Transfer function amplitude measured  
a large-channel serial SMR array, demonstrating frequency spacing  
of approximately 30 kHz and typical quality factors of 1,500–2,500.  
(e) Transfer function for a small-channel serial SMR array. a.u., arbitrary units.
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cantilever deflection signals. We employed two approaches: (i) an 
optical lever setup, in which all cantilevers are simultaneously illu-
minated and a single photodetector measures the superposition of 
their deflection signals (Supplementary Fig. 1), or (ii) using devices 
with piezoresistors doped into the base of each cantilever22,25, which 
are wired in parallel and their combined resistance measured via a 
Wheatstone bridge–based amplifier. The resulting deflection signal, 
which consists of the sum of k signals from the cantilever array, goes 
to an array of k phase-locked loops (PLLs) where each PLL locks 
to the unique resonant frequency of a single cantilever. Therefore 
there is a one-to-one pairing between cantilevers and PLLs. Each PLL 
determines its assigned cantilever’s resonant frequency, by demodu-
lating its deflection signal26, then generates a sinusoidal drive sig-
nal at that frequency. The drive signals from each PLL are summed 
and used to drive a single piezoceramic actuator positioned directly 
underneath the chip, completing the feedback loop (Supplementary 
Fig. 1). Each PLL is configured such that it will track its cantilever’s  
resonant frequency with a bandwidth of 50 or 100 Hz (Online 
Methods and Supplementary Fig. 2).

After acquiring the frequency signals for each cantilever, we con-
vert them to mass units via each cantilever’s sensitivity (Hz/pg), which 
must be known precisely. Although cantilever mass sensitivity should 
theoretically scale with the resonant frequency f to the power of 3/2 
(f3/2) (Supplementary Note 2), we found that the actual sensitivities 
occasionally deviated from the expected values and in some cases 
changed by up to 5% between days (Supplementary Fig. 3). To 
account for this, we measured the cantilever sensitivities during each 
experiment by spiking in inert monodisperse polystyrene–particle size 
standards into all samples. Because the particles are highly uniform 
(~1% coefficient of variation in diameter), we can easily distinguish 
them even when they are of similar size to the cells of interest.

The final step in extracting individual cell mass accumulation rates 
is to identify the frequency peaks in each cantilever that originate from 
the same cell. This is easily accomplished if the cells stay in the same 
order as they flow through the array. In practice, however, cells occa-
sionally change order, divide or drop out of the queue (by adhering  

to a channel wall or getting physically stuck in the channel) and may 
re-enter the queue at a later time. To match frequency peaks to the 
cells that generated them, we use a probabilistic model based on our 
assumptions about the expected time for a cell to traverse a delay 
channel and about the fastest rates at which cells can change mass. 
We assume that mass accumulation rates are nearly constant on the 
timescale of our measurements, which constitute a small fraction of 
a cell cycle16,17 (Supplementary Note 3 and Supplementary Fig. 4). 
We then apply the Hungarian algorithm27 to find a maximally likely 
way of matching all the cell events observed in cantilever 2 with the 
cells that have been observed in cantilever 1, followed by matching 
the cells observed in cantilever 3 with the cells observed in cantilevers  
1 and 2, and so on. At concentrations used here, the matching is robust 
(better than 99% for simulated data; Supplementary Fig. 5), and can 
be manually verified for accuracy. At higher cell concentrations,  
the risk of incorrect matching increases, but outliers of interest can 
still be manually verified.

Device characterization
As these devices represent the first chips implementing SMR arrays, 
we asked whether operating 10–12 cantilevers simultaneously would 
decrease the performance of each cantilever. We measured the fre-
quency noise for 12 large-channel cantilevers operating simultane-
ously using an optical-lever-based measurement system and observed 
minimal frequency noise (in terms of Allan deviations28) of 20–30 
parts per billion at averaging times of 200–500 ms (Supplementary 
Fig. 6). Slightly lower Allan deviations were observed for small- 
channel devices (Supplementary Fig. 6), with optimal noise at shorter 
averaging times (30–100 ms). In both cases, these noise magnitudes 
are comparable to that routinely achieved with single-cantilever 
devices but have the potential to be further reduced—by an order 
of magnitude or more—before reaching thermomechanical limits 
(Supplementary Fig. 6).

To assess how well the devices could resolve a cell’s mass accumu-
lation rate, we first analyzed mixtures of polystyrene particles span-
ning 4–12 µm in diameter for large-channel devices and 1.0–2.5 µm  
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Figure 2  Measuring the growth of lymphoid cell lines. (a) Data from 12 cantilevers demonstrating continuous operation over roughly 3 h with L1210 
cells at a flow rate of roughly 2 min between each cantilever (inset). (b) Buoyant mass data for L1210 cells extracted from frequency shifts of 
cantilevers; each color corresponds to a single cantilever, color-coded as in a. 7-µm particles were added as calibration; 9-µm particles were added as 
negative control (both are inert polystyrene particles). (c) Buoyant mass versus mass accumulation rate for L1210 cells in b, extracted via an automated 
peak-matching algorithm (Supplementary Note 3). Error bars indicate standard errors of the slope estimated directly from the fit. (d) Buoyant mass 
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for small-channel devices. Our measurements clearly showed 
that these particles’ masses were not changing, and the s.d. of the 
observed rates (an estimate for mass accumulation rate resolution) 
were 0.32 pg/h for the large-channel device (Supplementary Fig. 7) 
and 0.022 pg/h for the small-channel device (Supplementary Fig. 8).  
We also tested the large-channel device with fixed cells, which did 
not change in mass and showed a similarly low mass accumulation 
rate s.d. of 0.18 pg/h (Supplementary Fig. 9). These results are  
in agreement with what we would predict from equation (1) on  
the basis of the experimental flow rates and measured buoyant  
mass resolution.

Measuring growth rates of living cells
We used the large-channel serial SMR array to monitor the growth of 
steady-state L1210 cells (Fig. 2), a mouse lymphoblast cell line previ-
ously studied with SMRs16,17. In a 200-min experiment, we measured 
the size and mass accumulation rate of 150 cells. In the same time 
frame, a single SMR measuring each cell for 20 min could measure 
fewer than 10 cells, as it takes some time to switch between cells. 
As seen previously, these cells’ mass accumulation rates were size-
dependent and were higher for larger cells (Fig. 2c). We also measured 
Ba/F3 pro-B cells expressing the BCR–ABL oncoprotein. Under the 
same conditions as for the L1210 cells, we found a similar correlation 
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between mass and mass accumulation rate (Fig. 2d). As previously 
shown for L1210 cells17 but not Ba/F3 cells, the mass accumulation 
rate per unit cell mass is lower for smaller cells compared to larger 
cells, suggesting that Ba/F3 cells also deviate from purely exponential 
growth in a manner similar to L1210s.

We next investigated whether we could measure primary cells, 
beginning with mouse CD8+ T cells. CD8+ T cells are known to drasti-
cally alter their metabolic activity and begin to grow in response to 
stimulation29. However, current methods for studying this transition 
often rely on bulk or single-time-point measurements, which makes 
it difficult to characterize heterogeneity in this phenotypic response 
over time. To this end, we activated mouse CD8+ T cells in vitro and 
assayed their single-cell growth behavior daily for 4 d. Although the 
cumulative cell population grew robustly between daily measure-
ments, the serial SMR consistently revealed a sizable nongrowing sub-
population (Fig. 3a) composed of the lowest-weight fractions (5–15 pg  
buoyant mass). Between 24 and 48 h, the growing subpopulation 
increased relative to the nongrowers and stayed roughly constant in 
size after 48 h. As with L1210 and Ba/F3 cells, although the mass 
accumulation rate covaried with size in all cases, it was not directly 
proportional to mass but was instead proportional to mass minus an 
offset. This departure from exponential growth is similar to that seen 
for the L1210 and Ba/F3 cells.

Our measurements of mouse CD8+ T cells suggested we could  
rapidly assess human lymphocyte activation as an alternative to 
clinical techniques such as the lymphocyte transformation test30,31. 
This assay measures proliferation via DNA synthesis—typically via 
incorporation of tritiated thymidine—and requires several days to 
quantify bulk proliferation in response to activation. In contrast, we 
could directly observe activated lymphocytes within a population 
of unlabeled peripheral blood mononuclear cells (PBMCs) within  
24–36 h after stimulation. We obtained PBMCs from whole blood, 
activated them for varying durations and then immediately meas-
ured their growth (Fig. 3b). Naive (t = 0 h) PBMCs show a clear 
subpopulation of cells between 20 and 30 pg, but this subpopulation 
was not detectable after 12 h of activation, consistent with mono-
cyte adherence to the culture dish32. By 24 h, larger growing cells  
(putative activated T cells) were present, and by 36 h this population 
had expanded to even larger sizes and faster mass accumulation rates. 
The ability to assess growth within 36 h by mass accumulation of  
individual cells suggests the serial SMR array could provide a sub-
stantially faster method for assessing lymphocyte transformation  
than existing approaches that measure proliferation. Furthermore, 
quantitatively assessing single-cell growth within highly heterogene-
ous populations could help to identify responsive clones in a popula-
tion of generally unresponsive cells. This functionality is particularly 
promising for fields such as cancer immunotherapy, where the  
characterization of rare, responsive lymphocytes may offer crucial 
insight for the identification of tumor neoantigens.

To further explore the capabilities of the system for studying pri-
mary cell growth kinetics, we asked whether we could detect growth in 
single putative cancer cells from patients. We enriched acute myeloid  
leukemia cells from the peripheral blood or bone marrow of two 
patients by flow sorting cells expressing human CD15 and CD33 
(hCD15+hCD33+) (Supplementary Fig. 10 and Supplementary 
Table 1), which were then maintained in serum-supplemented 
medium. In neither case was the tumor immunophenotype known 
in advance, so the collected cell populations were heterogeneous 
owing to the conservative sorting strategy. Although no growth was 
visible at the population level over the first 48 h (Supplementary  
Fig. 11), we detected a rare subpopulation of cells (~4% of each sample)  

that were accumulating mass when we analyzed these samples on the 
serial SMR array 3–9 h after sample acquisition (Fig. 4). These cells 
typically grew between 0.2 and 1 pg over the 20-min measurement, 
which would correspond to a <1% change in diameter. We also noted 
another rare subpopulation of cells losing mass, which may be in the 
process of dying. These data—though exploratory—show that the 
serial SMR can resolve heterogeneous growth patterns in primary 
patient samples.

We next investigated whether the large-channel serial SMR array 
could be used to study S. cerevisiae, a model organism of interest in 
studies of growth-rate control and size homeostasis3,13. We measured 
the growth of single yeast cells in lag phase—a brief period of slow 
or no growth after transfer from spent medium to fresh medium. 
In a 3.5-h experiment, we measured the mass accumulation rates of 
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Figure 5  Measuring lag-phase yeast culture time-resolved growth 
dynamics at single-cell resolution. (a) Semilog plot of buoyant mass 
trajectories of yeast cells in rich medium. Data from SMR 9 were not used 
owing to very high noise. Particles between 5 and 20 pg are probably 
mostly single cells; particles with mass >20 pg are mostly clumps of cells. 
(b) Buoyant mass versus mass accumulation rate. Error bars indicate 
standard error of the slope estimated from each regression of buoyant 
mass versus time. (c) Mass accumulation rate per unit mass (interpretable 
as exponential growth rate) versus time. Error bars indicate standard error 
of the slope divided by the cell’s buoyant mass. Blue line shows locally 
weighted scatterplot smoothing (LOWESS) curve.
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208 cells (or cell clumps, as daughter cells often remain adhered to 
mother cells after division) (Fig. 5). We plotted these cells’ masses on 
a logarithmic scale because single yeast cells grow exponentially3,16.  
On a semilog plot the slope of a cell’s mass trajectory may be inter-
preted as an exponential growth rate, which is equivalent to its mass 
accumulation rate per unit mass. Below we refer to this as the cell’s 
growth rate. Throughout the first several hours following inoculation 
into fresh medium, the cell growth rates increased toward their maxi-
mal rate of approximately 0.5 per hour (Fig. 5b,c). Notably, the initial 
growth rate (i.e., immediately after inoculation into fresh medium) 

was not 0 but rather around 0.2/h, showing that yeast in station-
ary phase remain primed to begin growing immediately, albeit at a  
submaximal rate, should conditions become favorable.

We next asked whether serial SMR arrays designed for bacteria 
could provide rapid and precise measurements of bacterial growth. We 
first investigated the growth of single log-phase E. coli cells (Fig. 6a).  
In rich medium (LB) at 37 °C, the average growth rate of individual 
bacteria was 2.14 ± 0.02/h (mean ± s.e.m., 19.4 min doubling time) 
with a coefficient of variation of 7.4% excluding four outlying small 
cells (Fig. 6a), in good agreement with other recent measurements12. 
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Figure 6  Measuring bacterial growth and drug response on a small-channel serial SMR array. (a–c) Serial SMR array buoyant mass measurements (left) 
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However, it is notable that we were measuring growth on a much 
shorter timescale (4 min instead of a full 20-min cell cycle) and that 
the biological variation on this timescale was no larger than at longer 
timescales. We were also able to measure growth of the Gram-positive  
coccus E. faecalis (Supplementary Fig. 12). This strain behaved simi-
larly to the Gram-negative rod E. coli in the serial SMR array, growing 
at easily detectable rates with a mean of 1.86 ± 0.02/h. The serial SMR 
array can thus provide high-resolution and rapid growth measurements  
of single Gram-positive and Gram-negative bacteria of varying  
morphologies, including clinically relevant species.

We next asked whether we could observe the effects of antibiotics  
on bacterial growth. We added kanamycin to an E. coli culture midway 
through the experiment (Fig. 6b), after which the growth rate dropped 
rapidly, reaching almost 0 in less than 0.5 h. This result demonstrates 
the potential for assessment of antibiotic susceptibility and quantifica-
tion of killing kinetics on an unprecedented timescale. Furthermore, 
we noted variation in the timescale of growth arrest: after 20 min of 
exposure to kanamycin, some cells had nearly stopped growing while 
others continued growing near their maximal rate.

Finally, we asked whether we could observe the growth-arresting 
effects of the antimicrobial peptide CM15 (ref. 33), which is known to 
permeabilize cells on short timescales but does not change the overall 
cell size as measured by microscopy34. When we added CM15 to the 
E. coli culture, we observed an immediate decrease in mean cell mass 
and an immediate cessation of mass accumulation (Fig. 6c). Although 
most cells appeared to be neither growing nor decreasing in mass, we 
observed rapid loss of mass in several cells immediately after peptide 
addition and up to nearly 1 h later.

DISCUSSION
We have shown that the serial SMR array can precisely measure  
single-cell mass accumulation rates for up to 60 mammalian or 150 
bacterial cells per hour. This enables observation of the full dis-
tribution of growth behaviors—including rare cells behaving very  
differently from the average cell—on short timescales. This method 
is compatible with a variety of cell types, including cell lines, primary 
blood cells, yeast and bacteria, and can be used to profile the response 
of cells in culture to perturbations, including small-molecule thera-
peutics and peptides. We envision that this device will be applicable 
in many areas of research and potentially in a clinical setting. The 
ability to detect rare growing cells in complex mixtures from patients 
suggests the possibility of correlating these types of measurements 
to disease states and assessing drug susceptibility in these rare cells. 
Outside of medical applications, the serial SMR system could be used 
to quantify cellular heterogeneity to determine how cell growth is 
intrinsically tied to a broad array of molecular-scale phenomena.

Our system has both benefits and drawbacks compared to micros-
copy, which has long been a mainstay for studying cell growth. Small-
channel serial SMR arrays provide at least tenfold higher precision 
than that reported in a recent quantitative phase microscopy study35 
(Supplementary Note 4 and Supplementary Fig. 13). Furthermore, 
at slower flow rates, the precision increases by another two- to three-
fold, to a level achievable with dynamic trapping measurements 
performed on a single SMR (Supplementary Fig. 13). This higher 
resolution is probably the reason we observed substantially less cell-
to-cell variability (Supplementary Fig. 13b,d). The high precision 
applies to cells in flow, including motile cells, which is advantageous 
for automated clinical assays such as antibiotic-susceptibility testing; 
however, there are drawbacks to our method. The serial SMR array is 
currently not suitable for measuring growth of cells that are attached 
to a surface. Furthermore, unlike microscopy, this method can capture 

only short ‘snapshots’ of single-cell growth, though the length of the 
snapshot may increase in the future with increasing SMR paralleli-
zation. Finally, microscopes are more widely available and easier to 
operate than the current version of our serial SMR system.

In future work, the serial SMR approach described here could be 
optimized further. Improving the actuation and detection schemes 
might reasonably enable an order-of-magnitude improvement in mass 
accumulation rate precision (Supplementary Fig. 6), and this extra 
precision could be exchanged directly for higher throughput by increas-
ing the flow rates of cells transiting the array (Supplementary Note 1 
and Supplementary Fig. 14). Another possibility is to further paral-
lelize the system by implementing many serial SMR arrays on a single 
chip, enabling measurement of cells under many conditions simul-
taneously—for example, bacteria in several different concentrations 
of antibiotic. Other future advancements could include integration 
with fluorescence microscopy and methods to sort cells on the basis 
of growth rate, both of which would greatly expand the potential for 
correlative assays that link growth kinetics with underlying biology.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Device design and fabrication. Devices were fabricated using previously 
described methods22,36. Large-channel devices used with optical-lever rea-
dout were fabricated at MIT’s Microsystems Technology Laboratories and 
Innovative Micro Technology (IMT), and large-channel devices with embed-
ded piezoresistors for readout were fabricated at CEA–LETI. Notably, the large 
devices designed for optical-lever readout did not include a getter layer, but 
the cavity surrounding the cantilevers remained in vacuum. Large-channel 
devices had cantilever interior channels of 15 × 20 µm in cross-section, and 
delay channels 20 × 30 µm in cross-section. Only human PBMC measure-
ments were carried out on large-channel devices fabricated at CEA–LETI; 
all other mammalian cell and yeast experiments were on devices fabricated 
at IMT without piezoresistors. Small-channel devices were fabricated at IMT 
and had cantilever channels 3 × 5 µm in cross-section, and delay channels  
4 × 15 µm in cross-section. The tips of the cantilevers in the array are aligned 
(Fig. 1) so that a single line-shaped laser beam can be used for optical-lever 
readout (Supplementary Fig. 1). The cantilevers were arrayed such that the 
shortest (and therefore most sensitive) cantilevers were at the ends of the array. 
Before use, the device was first cleaned with piranha (3:1 sulfuric acid to 50% 
hydrogen peroxide) and the channel walls were passivated with polyethylene 
glycol (PEG) grafted onto poly-l-lysine (SuSoS).

System setup. A full schematic and picture for the device setup using optical-
lever based detection is shown in Supplementary Figure 1. A piezoceramic 
actuator seated underneath the device is used for actuation. The custom-made 
low-noise photodetector, Wheatstone bridge–based amplifier (for piezore-
sistor readout) and high-current piezoceramic driver have been described 
elsewhere37. It is worth noting that in previous readout systems designed for a 
single cantilever, signal distortion (via electronic saturation or optical interfer-
ence patterns) did not typically contribute to system noise, as the distortion 
generates spectral components at integer multiples of the carrier frequency that 
are easily filtered out. However, in a channel carrying many signals, nonlinear 
distortion (especially saturation) will generate noise near the carrier signals 
(Supplementary Fig. 15). Therefore, care must be taken to ensure that no signals 
become saturated. To avoid the effects of optical interference between signals 
from different cantilevers (producing harmonics at the difference frequency), 
we used a low-coherence-length light source (675 nm superluminescent  
diode, 7 nm full-width half-maximum spectral width, Superlum) for our 
optical lever. After the custom photodetector converts the optical signal to a 
voltage signal, the voltage signal is fed into a field-programmable gate array 
(FPGA) board, for which implementation details were published previously26. 
Briefly, the FPGA implements 12 parallel second-order phase-locked loops 
that both demodulate and drive a single cantilever. The FPGA is a Cyclone 
IV FPGA (Altera) on a DE2-115 development board (Terasic Inc.) operating 
on a 100 MHz clock (AOCJY2 oven-controlled crystal oscillator, Abracon). 
Analog input and output were via a high-speed analog-to-digital/digital-to-
analog (AD/DA) card (DCC HSMC card, Terasic Inc.) operating 14-bit AD 
and DA converters at 100 MHz.

System operation. To operate all cantilevers in the array, we first measure 
the resonator array transfer function by sweeping the driving frequency and 
recording the amplitude and phase of the array response. We next calculate 
parameters for each PLL such that each cantilever-PLL feedback loop has 
a 50- or 100-Hz FM-signal bandwidth. We then adjust the phase-delay for 
each PLL to maximize the cantilever vibration amplitude. Finally, we meas-
ure the FM-signal transfer function for each cantilever–PLL feedback loop to 
confirm sufficient measurement bandwidth (in case of errors in setting the 
parameters). This transfer function relates the measured cantilever–PLL oscil-
lation frequency to a cantilever’s time-dependent intrinsic resonant frequency. 
Frequency data for each cantilever are collected at 500 Hz, and are transmitted 
from the FPGA via Ethernet to a personal computer where they are saved via 
custom LabView software (National Instruments).

As in previous SMR systems, the device is placed on a copper heat sink/
source connected to a heated water bath maintained at 30 °C (yeast) or 37 °C 
(mammalian cells and E. coli) for the duration of the experiment. The sample is 
loaded into the device from vials pressurized under air (yeast and E. coli) or air 
with 5% CO2 (mammalian cells) (Supplementary Fig. 1), through 0.009-inch 

inner-diameter fluorinated ethylene propylene (FEP) tubing. The pressurized 
vials are seated in a temperature-controlled sample holder throughout the 
measurement. FEP tubing allows us to flush the device with piranha solution 
for cleaning, as piranha will damage most nonfluorinated plastics. To measure 
a sample of cells, we first flush the device with filtered medium and then flush 
the sample into one bypass channel. NIST-traceable polystyrene beads are 
added to the sample as an internal calibration standard. For experiments on 
large-channel devices, we typically apply between 1 and 2 p.s.i. across the entire 
array, yielding flow rates on the order of 0.5 nL/s (the array’s calculated fluidic 
resistance is approximately 3 × 1016 Pa/(m3/s), calculated as described38). For 
small-channel devices, we apply 4–5 p.s.i. across the array, yielding flow rates 
of ~0.1 nL/s. Additionally, every several minutes we flush new sample into 
the input bypass channel to prevent particles and cells from settling in the 
tubing and device. Between experiments, devices are cleaned with filtered 2% 
tergazyme, filtered 10% bleach or piranha solution.

Data analysis. We first rescale the recorded frequency signals from each can-
tilever by applying a rough correction for the different sensitivities of the 
cantilevers. Cantilevers differing only in length should have mass sensitivities 
proportional to f3/2. Therefore we initially divide each frequency signal by its 
carrier frequency to the power of 3/2 such that the signals are of similar mag-
nitude. To detect peaks, we filter the data with a third-order Savitzky–Golay 
low-pass filter39 followed by a nonlinear high-pass filter (subtracting the 
results of a moving quantile filter from the data). We find peak locations as 
local minima that occur below a user-defined threshold. After finding the peak 
locations, we estimate the peak heights by fitting the surrounding baseline 
signal (to account for a possible slope in the baseline that was not rejected by 
the high-pass filter), fitting the region surrounding the local minima with a 
fourth-order polynomial and finding the maximum difference between the 
predicted baseline and the local minima polynomial fit. Because this process 
occasionally makes errors (it sometimes detects noise, particles that got stuck 
in the cantilever and particles that passed through the cantilever at the same 
time), for each cantilever we reject peaks that are very unlike the typical peak. 
We do this by first calculating the robust Mahalanobis distance for each peak in 
terms of a number of its estimated characteristics (baseline slope, time between 
sequential antinode peaks, minimum value between sequential peaks and dif-
ference in heights of sequential peaks) and rejecting those with large distances 
above a user-specified threshold, then identifying the peaks corresponding to 
the calibration particles and precisely estimating the mass sensitivity for each 
cantilever such that the modal mass for the particles is equal to the expected 
modal mass according to the manufacturer’s data sheet. Finally we match up 
peaks at different cantilevers that originate from the same cell to extract single-
cell growth information (Supplementary Note 3). Figures 2–5 show the mass 
accumulation rates of automatically matched cells that were observed at least 
seven times. For E. coli (Fig. 6), because the cell concentrations were higher, 
we required both that the cell was measured at least six out of ten times and 
that the r.m.s. error of a linear fit (buoyant mass versus time) was less than  
5 fg, as a greater fitting error suggests a possibly incorrect matching.

Cell culture. E. coli strain 25922 (ATCC) was grown overnight in LB medium 
(Miller, Difco) at 37 °C. Saturated overnight cultures were diluted 10,000-fold 
in LB supplemented with 0.2% Tween-80 (to prevent particles from sticking 
to the device walls) and incubated 1.5–2.5 h in a shaker incubator at 37 °C 
before being loaded onto the serial SMR array. The CM15 peptide (sequence 
KWKLFKKIGAVLKVL; Biosynthesis) was ordered as a crude synthesis and 
suspended in water by weight. Kanamycin (Sigma-Aldrich) and CM15 were 
prepared as stock solutions at 50 mg/mL in water, and 1 µL of stock solution 
was added to 1 mL culture at the times indicated.

E. faecalis (ATCC strain 29212) was grown overnight in Brain Heart 
Infusion medium (BHI, Difco) at 37 °C. Saturated overnight cultures were 
diluted 100,000-fold in BHI with 0.2% Tween-80 and incubated for 3 h in a 
shaker incubator at 37 °C before being loaded onto the serial SMR array.

Yeast (strain W303, diploid) were a gift from A. Amon and were maintained 
on YPD agar plates and grown in YPD broth at 30 °C.

L1210 cells were a gift from M. Kirschner, and no further cell-line valida-
tion was performed. Ba/F3 cells expressing BCR and ABL were created40 from 
the parental Ba/F3 cell line obtained from the RIKEN BioResource Center.  
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Both cell lines tested negative for mycoplasma. L1210 and Ba/F3 cells were 
cultured in filtered RPMI 1640 supplemented with 10% FBS and streptomycin 
and penicillin at 37 °C under 5% CO2. Ba/F3 cells were cultured under identi-
cal conditions and were IL-3 independent owing to a BCR–ABL insertion.

Mouse CD8+ T cells were obtained from a 14-week-old female C57BL/6J 
mouse. Animals were cared for in accordance with federal, state, and local 
guidelines following a protocol approved by the Department of Comparative 
Medicine (DCM) at MIT. Cells were obtained from a mouse spleen and two 
lymph nodes, ground through a filter, subjected to ammonium–chloride–
potassium (ACK) lysis, purified with a CD8a+ T Cell Isolation Kit (Miltenyi) 
and immediately seeded into wells and activated in RPMI 1640 with 10% FBS, 
1× streptomycin–penicillin, and 55 µM β-mercaptoethanol (Gibco) using sur-
face-bound anti-CD3 (BioLegend 145-2C11, coated at 5 µg/mL) and soluble 
anti-CD28 (BioLegend, 37.51, 2 µg/mL) at 37 °C under 5% CO2 for 22 h. 
After 22 h, cells were transferred to new medium containing IL-2 (100 U/mL) 
and from then on were passaged daily to a concentration of roughly 200,000 
cells/mL 2–3 h before each measurement.

Human blood buffy coat was obtained from Research Blood Components, 
and PBMCs were isolated with Ficoll-Paque Plus (GE) using the manufactur-
er’s recommended protocol. The PBMC layer was isolated, subjected to ACK 
lysis (Thermo Fisher) and washed three times with RPMI 1640 supplemented 
with 10% FBS. Cells were then seeded in a 96-well plate (Corning High Bind 
microplate) at a concentration of 1.5 × 106 mL–1 with 5 µg/mL surface-bound 
anti-CD3 (BioLegend, HIT3a clone), 2 µg/mL soluble anti-CD28 (BioLegend, 
CD28.2 clone), and 100 U/mL soluble IL-2 (PeproTech) at 37 °C under 5% 
CO2. Immediately before measurement, cells were harvested from the well by  

gentle pipetting to suspend weakly adhered cells, diluted into RPMI 1640  
supplemented with 10% FBS and IL-2 and loaded into the serial SMR array.

All studies involving primary patient samples were approved by the Dana-
Farber/Harvard Cancer Center Institutional Review Board. Informed consent  
was obtained in accordance with the Declaration of Helsinki. Diagnostic 
peripheral blood or bone marrow specimens were obtained from patients 
with acute myeloid leukemia (Supplementary Table 1), subject to erythro-
cyte lysis (Qiagen, #158904), and stained with antibodies targeting hCD45  
(eBiosciences, #17-9459-42) and hCD15 (eBiosciences, #12-0159-42). 
Leukemia cells were enriched by sorting for hCD45+hCD15+ (double- 
positive) cells on a FACSAria II SORP fluorescence activated cell sorter (BD 
Biosciences) (Supplementary Fig. 8). Sorted cells were seeded at a density 
of 1 × 106 cells/mL and cultured at 37 °C in a humidified 5% CO2 incubator 
in RPMI (Gibco) supplemented with 10% FCS (Gibco), 2 mM l-glutamine 
(Gibco), and 50 IU/ml–50 µg/mL penicillin–streptomycin (Fisher Scientific) 
before dilution and loading on the SMR.
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Supplementary Figure 1 

Schematic of the control system for the serial microfluidic mass sensor array. 

(A) Schematic of optical and electronic path of parallel feedback loops for each mass sensor. (B) Photograph of the optical setup 

implementing the schematic in (A). The photograph shows the sample holder and the fluidic connections to the sensor chip.  
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Supplementary Figure 2 

Transfer functions of the PLL–cantilever control loops. 

Measured transfer functions (colored lines) of all twelve PLL-cantilever feedback loops on a single large-channel serial SMR device. 
Bandwidth had been set to 100 Hz according to the method in [1]. Solid black line shows ideal 100 Hz first-order response, dashed grey 
line indicates -3 dB bandwidth. 
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Supplementary Figure 3 

Sensitivities of the mass sensors in a large-channel device. 

Resonant frequency versus mass sensitivity for a single large-channel device, measured daily during the mouse CD8 cell experiments 
(Figure 3 in the main text). Dashed grey line shows best fit of data to y = ax

1.5
, illustrating how sensitivity scales with frequency to the 

power of 1.5. While fabrication tolerances and slight variations in geometry may explain some of the deviations from the model, it 
remains unclear why some cantilevers exhibit substantial day-to-day variation. 
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Supplementary Figure 4 

Example contour plots of the cost function used in the matching algorithm. 

Contour plots of the cost function for several simulated example cells with varying numbers of previous peaks observed (black points). 
(A) If a cell only has a single peak assigned, the cost function is shaped like a wide bowl, shaped almost entirely by the prior 
assumptions on mass accumulation rate and system noise. (B), (C) As more data points are observed, the mass accumulation rate 
becomes established and the cost function contours become determined by the system’s mass measurement noise. 
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Supplementary Figure 5 

Simulation of the cell-matching process. 

Simulation of the cell matching process showing that single cells are reliably matched by our method. (A) We simulate a set of cells 
sampled from a joint distribution of mass and mass accumulation rate similar to the L1210 cells shown in Figure 2. However, we 
simulate cells entering the serial SMR array at a rate of 100 cells per hour (two-fold more concentrated than we have used in our 
experiments). Each cell varies in the time it takes to travel from each cantilever to the next (mean 1.9 minutes, standard deviation 0.3 
minutes), and Gaussian noise is added to each buoyant mass measurement (standard deviation 0.05 pg, similar to that of our large-
channel device). (B) We then match the measurements in the simulated data. All data points that have been matched together as 
corresponding to the same cell have been colored the same randomly-chosen color. (C) Comparison of the masses and mass 
accumulation rates from which the data in (A) was generated, and the observed mass and mass accumulation rates, showing excellent 
agreement. (D) Comparison of mass accumulation rates from which the data in (A) was generated, and the observed mass 
accumulation rates, showing excellent agreement, except for in the case of two mismatched cells (off-diagonal points) out of 300 in the 
simulated dataset. 
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Supplementary Figure 6 

Stability of the cantilevers used in the mass sensor arrays. 

Measured Allan deviations of all cantilevers on two separate devices. Left two plots show Allan deviations in fractional frequency units, 
relative to the unloaded cantilever frequency (colored dots/lines). For reference, the dashed grey line indicates the measured noise 
performance of an optimized piezoresistive single large-channel SMR. Right two plots show Allan deviations rescaled by each 
cantilever’s mass sensitivity. Theoretical thermomechanical limitations on the lowest achievable Allan deviations are also plotted 
(calculated from [2]), assuming the cantilever is driven to a mean-squared displacement one billion times (90 dB) above the thermally-
driven mean-squared displacement. While larger drive amplitudes would theoretically further reduce these limits, mechanical 
nonlinearity typically becomes significant beyond 90 dB, limiting noise performance. 
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Supplementary Figure 7 

Mass accumulation rate resolution of the large-channel devices. 

Measuring a mixture of plastic microparticles to determine mass accumulation rate resolution on a large-channel serial mass sensor 

array. (A) We measured a mixture of 4, 6, 7, 8, 9, 10 and 12 m polystyrene beads (Duke Standards, NIST traceable, Thermo 
Scientific) at 37 C in 0.01% Tween-20 in water. Sensors were calibrated by linearly rescaling their raw frequency signals such that the 

7 m bead modal mass is the expected buoyant mass (10.15 pg). (B) Across all sizes and sensors, particle buoyant masses match the 

expected buoyant masses (dashed lines), verifying that the sensors are linear over this size range. (C) 4 m particles have the lowest 
size variability (in pg) of these beads according to manufacturer’s datasheet, and therefore their distribution’s width is a reasonable 
upper bound on the sensor error. Typical sensor root-mean-square-error is on the order of 0.05 pg. (D) Histogram of mass 
accumulation rates (errors, as particles are not growing) of 85 single particles for which at least 10 sensors could be linked together. 
Mass accumulation rates were calculated excluding data from the first sensor, which displayed much higher noise than the other 

sensors. Dashed line shows estimated mass accumulation rate distribution assuming t = 1.4 minutes, k = 11, and = 0.05 pg, showing 
good agreement between this approximation for mass accumulation rate error and the observed mass accumulation rate error 
distribution. 
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Supplementary Figure 8 

Mass accumulation rate resolution of the small-channel devices. 

Same as Supplementary Figure 7, but for a small-channel serial SMR array. (A) We measured a mixture of 1.0, 1.36, 1.57, 1.74, 2.0, 

and 2.5 m polystyrene beads (Duke Standards, Thermo Scientific, except for 1.0 m, from Bangs Labs) at 37 C in LB with 0.1% 

Tween-80. Sensors were calibrated by linearly rescaling their raw frequency signals such that the 1.0 m bead modal buoyant mass is 
0.02 pg (the expected buoyant mass in LB at a density of 1.013 g/mL). (B) Distributions of measured buoyant masses for each SMR in 

the array, demonstrating both linearity and precision in each cantilever mass measurement. (C) Buoyant mass distributions of 1 m 
polystyrene particles provide an upper bound on each cantilever’s buoyant mass measurement error, here on the order of 0.5-1 fg. (D) 
Mass accumulation rate distribution of single 362 single particles, yielding a mass accumulation rate standard error of 0.022 pg/h. 

Dashed line shows mass accumulation rate distribution based on equation 2 assuming t = 24 seconds, k = 10, and = 0.001 pg. 
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Supplementary Figure 9 

Mass accumulation rate of a fixed mouse lymphoblast cell line (L1210). 

(A) Buoyant mass trajectories for fixed L1210 cells, measured in phosphate-buffered saline at 37 C. (B) By plotting mass accumulation 
rate against time, the first cells going through the array can be seen to be losing mass. We believe this is real mass loss attributable to 
the temperature shift (cells had been fixed and stored at 4 C), and note that after one hour into the measurement cells appear to have 
equilibrated and no further mass loss occurs. (C) Histogram of mass accumulation rates of fixed cells, excluding the first hour of 
measurements. 
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Supplementary Figure 10 

FACS plots of primary acute myeloid leukemia cells. 

FACS plots of two primary AML samples whose growth properties were assessed on the SMR. Fresh primary peripheral blood or bone 
marrow samples from patients with newly diagnosed AML were subject to erythrocyte lysis and stained with antibodies targeting human 
CD33 and human CD15, and leukemia cells were enriched by performing FACS for hCD33/hCD15 double-positive cells. Left panel 
(sample 1): primary peripheral blood sample from a patient with AML with monocytic differentiation and extensive circulating disease. 
Contemporaneous clinical testing confirmed that this leukemia expressed CD33 and CD15 and demonstrated that it comprised 43% of 
peripheral blood mononuclear cells, on which this sample was gated. Of note, this specimen was obtained after the patient had 
received cytoreductive chemotherapy (hydroxyurea) for three days. Right panel (sample 2): primary bone marrow aspirate from a 
patient with therapy-related AML. Of note, this specimen did not undergo immunophenotyping by the clinical lab, but morphologic 
analysis suggested that the leukemia comprised a minority of cells in this double-positive population. 
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Supplementary Figure 11 

Culturing AML cells ex vivo. 

We seeded cells obtained from Patient 1 (Figure 4 and Supplementary Figure 10) at 0.5, 0.7 and 1.5 million cells/mL (blue, red, and 
black, respectively) into 6-well culture dishes. (A) We profiled these cultures volume distributions over the next 48 hours with a coulter 

counter (Beckman Coulter Multisizer 4, 100 m aperture). The cultures behaved similarly for different inoculation densities. (B) Total 
cell counts generally increased slightly, but total biovolume decreased. 
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Supplementary Figure 12 

Mass accumulation rate of E. faecalis measured on a small-channel mass sensor array. 

At the left, colored dots show points which were determined to correspond to a single cell, for which the mass accumulation rate was 
determined and plotted against the cell’s mass (right). Grey points indicate measurements for which less than seven mass 
measurements could be linked together, and were not used in the analysis at right. E. faecalis was grown in Brain-Heart Infusion (BHI, 
Difco) overnight and transferred to fresh BHI with 0.2% Tween-80 at a 105-fold dilution approximately three hours prior to 

measurement. 1.36 m beads were used as the calibration standard and have been omitted from the plot at left for clarity. 
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Supplementary Figure 13 

Comparison of precision between recent quantitative-phase microscopy measurements and SMR measurements. 

Plots in (A) and (B) are excerpted from Mir et al. [3]. Insets in the original figure (A) and caption segment describing the insets have 
been omitted for clarity. Original caption reads: 

SLIM measurements of E. coli growth. (A) Dry mass vs. time for a cell family. [...] The blue line is a fixed cell measurement, 
with SD of 19.6 fg. Markers indicate raw data, and solid lines indicate averaged data. (B) Growth rate vs. mass of 20 cells 
measured in the same manner. Faint circles indicate single data points from individual cell growth curves, dark squares 
show the average, and the dashed line is a linear fit through the averaged data; the slope of this line, 0.011 min 1, is a 
measure of the average growth constant for this population. The linear relationship between the growth rate and mass 
indicates that, on average, E. coli cells exhibit exponential growth behavior. 

(C) Single-cell E. coli (ATCC 43893) growth trajectories measured on a single SMR (160 m long with a 3 by 5 m interior channel, 
operated in the second vibrational mode at 1.1 MHz) of similar design to the SMRs in serial SMR arrays. Growth was measured by 
passing a single cell back and forth through the SMR, as in [4]. Data points from other cells that entered the sensor during the dynamic 
trap (but were ignored by the trapping algorithm) were removed. SMR measurements were made in LB at room temperature, yielding a 
similar growth rate as in Mir et al. [3], which used E. coli MG1655 in M9-casamino acid media at 37 C. (D) Colored points are buoyant 
mass accumulation rates estimated from the data in (C), based on linear fits to non-overlapping 5-minute segments. Five minutes was 
chosen as that was the width of the applied smoothing filter in (A) and (B). Black points are mass accumulation rates from E. coli cells 
at 37 C measured in the serial SMR array in Figure 6A. Dashed lines show best linear fits in which the intercept was forced to zero, and 
corresponding exponential growth rates are noted for the two experiments. Note that the terminology of ’growth rate’ used in (B) is 
equivalent to ’mass accumulation rate’. 
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Supplementary Figure 14 

Theoretical trade-off between throughput and resolution. 

Theoretical trade-off between throughput and resolution for the large-channel devices used in this study, with 12 mass sensors and 
delay channels with volumes 120-fold higher than the volume of a single cantilever. We assume the cell concentration cannot exceed 
one cell per 50 sensor volumes (to avoid two cells being in the sensor at the same time), yielding the line of possible operating points. 
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Supplementary Figure 15 

Effect of signal clipping in power spectral density around the sensor resonant frequencies. 

Saturation applied to a channel carrying many sinusoids adds many other spectral components that are not easily filtered out (noise). 
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Primary Sample 1 Primary Sample 2

Patient Characteristics

Tumor Characteristics

Age

Gender

82

Male

62

Female

Diagnosis

Diagnostic tissue

Involvement by Leukemia (%)

Immunophenotype

 Positive

Negative

Karyotype

Molecular abnormalities

Prior AML therapy

AML with monocytic differentiation

Peripheral blood

43

CD45 (dim), HLA-DR, CD56 (subset), 
CD13, CD33, CD15, CD14 (variable), 
CD11b (subset), CD64

CD34, CD117

Normal (46,XY)

FLT3, NPM1, TET2 mutations

Hydroxyurea x 3 days

AML (therapy-related)

Bone marrow

6

N/A

N/A

46,XX, t(1;16)(p32;p13.1), 
t(8;21)(q22;q22)

None detected

None

Supplementary Table 1
Clinical characteristics of primary AML samples studied with a serial SMR array.
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Note 1: Resolution of mass accumulation rate sensor

How precisely can we measure the mass accumulation rate of a cell? To measure the mass accumulation
rate, we will measure the cell size k times, once every� t minutes, and fit a model to explain how it varies
over time. Here we will assume the total duration of the measurements (k�t) is short enough that a line is
an appropriate model. So the problem becomes, how precisely can we know the slope of a line?

Fortunately, least-squares slope estimates can be written as a linear combination of the observed size
values, Y , as follows [5]:


intercept
slope

�
= (XT

X)�1

X

T
Y

Here X is a k ⇥ 2 matrix, where the first column is filled with ones, and the second column corresponds
to the evenly-spaced times at which the cell size is measured. For simplicity, we assume the times are
mean-centered, yielding the following time vector:
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the coe�cient vector relating the measured sizes to the slope estimator (specifically, this coe�cient vector
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Since the slope estimate is a linear combination of observed size values Y = [y
1

y

2

. . . yk]
T , errors also

propagate linearly. If all the size measurements have independent and identically distributed errors with
mean zero and root-mean-square-error (RMSE) �✏, then the slope RMSE is �✏ times the magnitude of the
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It is worth note that we could parameterize this instead in terms of total time transiting the array,
T = k�t, with k measurements occurring at evenly-spaced increments throughout this interval.
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In this form, it is clearly seen that the standard error scales inversely proportional to the total measurement
duration, with a

p
k dependence on the number of measurements made during that interval (in direct analogy

to the central limit theorem).
We can use equation (2) generally to estimate the resolution of any sytem measuring rates of mass or

volume increase, but specifically in the case of a serial SMR array, it also provides a convenient way to
express the e↵ect of the flow rate, which controls the trade-o↵ between mass accumulation rate resolution
and throughput. As we increase the flow rate, we decrease� t proportionally, which decreases the mass
accumulation rate resolution. Simultaneously, the throughput goes up directly proportionally to flow rate.
An added e↵ect is that faster flow rates yield largermass error, �✏, as the cell spends a smaller amount of time
in the cantilever and therefore cannot filter out as much frequency noise. For white-noise-dominated resonant
frequency measurements (here corresponding to flow rates faster than what we’ve utilized in this paper for
large-channel devices, e.g.� t < 2 minutes), we expect that �✏ will scale roughly inversely proportional to
the square root of� t:

�✏ =
↵p
�t

(3)

Plugging this into (2) suggests that as we increase the flow rate, the mass accumulation rate error is
expected to scale with throughput (1/�t) to the three-halves.

�
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(4)

We have illustrated this resolution-noise trade-o↵ in Supplementary Figure 14. For slower flow, �✏ may
not be dominated by white frequency noise but instead by flicker (pink) or brown noise, and therefore (3)
will sizably underestimate the actual mass noise magnitude.

Note 2: Mass sensitivity scales with frequency

3/2
for varied cantilever lengths

The cantilever resonant frequency f is given by f = 1

2⇡

q
k

meff
, where k is the spring constant and meff is the

e↵ective mass of the cantilever. meff is proportional to the cantilever length l [6], and k is proportional to
1/l3 [7], therefore f / 1

l2 .

We can similarly determine how the cantilever mass sensitivity [8], s depends on length: s / f
m / 1

l3 .

Combining these two facts, we find s will be proportional to f

3/2, when all dimensional parameters other
than the length of the cantilever are kept constant.
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Note 3: Explanation of peak matching algorithm

We attempt to identify all the peaks (up to twelve, one in each cantilever) that we believe originate from
the same cell. To do this, we use a heuristic approach in which we build “cells”, collections of peaks that
we believe belong to the same cell. At each cantilever in turn, starting at the second cantilever, we try to
match the observed peaks at that cantilever with the previously observed cells. To match peaks to their
corresponding cells, we define a cost function, detailed below, representing our assumptions about how cells
both grow and flow through the device. We then try to find a way of pairing the already-observed cells (from
the first n cantilevers) with the peaks observed at cantilever n+1 that minimally violates our expectations.
Additionally, we also include the possibility that a cell is not observed at a particular cantilever, possibly
due to simultaneously entering the cantilever at the same time as another cell, or adhering to the device
walls. We include this possibility by adding fictitious cells (“gaps”) such that a previously-observed cell can
be assigned to a gap if there are no peaks at sensor n that are likely to originate from that cell. Similarly,
a peak in cantilever n+1 can be assigned to a gap if it doesnt appear to clearly appear to correspond to an
existing cell.

Pseudo-code for our matching approach is given below (variables are denoted in blue):

Initialize each peak in sensor 1 as its own cell, put them all in cellList

For each sensor n in 1:(numberOfSensors-1)
peaksToBeAssigned = all peaks in sensor n+1

costs = matrix( number of rows = length(cellList),
number of columns = length(peaksToBeAssigned) )

Pad costs with extra rows and columns for 'unassigned' cells
Set entries of costs for assigning a cell to 'unassigned' to gapCost
Set entries of costs for assigning 'unassigned' to 'unassigned' to 0

For each r in 1:length(cellList)
For each c in 1:length(peaksToBeAssigned)

costs[r,c] = -log( P(peaksToBeAssigned[c] | cellList[r]) )

Find optimal assignment for costs via Hungarian algorithm

Any peaks in peaksToBeAssigned that were assigned to existing cells in the cellList
should be concatenated onto the end of their corresponding cell.

Any entries in peaksToBeAssigned NOT assigned to existing cells are added to the
cellList as cells containing only one peak.

The heart of this approach is how we define a cost function representing our prior assumptions about
device behavior (e.g. cells take approximately two minutes to transit from one cantilever to the next, and
can’t possibly show up at cantilever 2 before appearing at cantilever 1) and cell behavior (over such a short
time period, cell mass usually changes roughly linearly, and the rate of change is unlikely to be extremely
large). To represent these assumptions, we use a probabilistic model of seeing a peak of a particular mass
and time at sensor n+1, given the previous n peaks we’ve already decided are part of the cell’s trajectory.
Using the negative log of the probability gives us a cost function for which minimizing the cost corresponds
to maximizing the likelihood of the data.

We model the probability of observing a peak of mass mn+1

and at time tn+1

, conditioned on the peak
occurring at sensor n+1 and having observed previous peaks of masses m

1:n at times t
1:n, as follows:

P (mn+1

, tn+1

|m
1:n, t1:n) = P (mn+1

|tn+1

,m

1:n, t1:n)P (tn+1

|m
1:n, t1:n)

We then assume tn+1

depends only on tn, and is normally distributed with mean tn + µ

�t and variance
�

2

�t, where µ

�t and �

2

�t are specified by the user a priori. We further posit that mn+1

should be related to
tn+1

and the previous data via the following relation
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mn+1

= �

1

tn+1

+ �

0

+ ✏

where �

1

is a random variable corresponding to the slope implied by the previous datapoints, �
0

is the
y-intercept, and ✏ is random instrument noise. If we mean-center the time values (

P
i21:n ti = 0), then �

0

and �

1

become uncorrelated, and we can thus express the mean and variance of mn+1

as

µmn+1 = tn+1

µ�1 + µ�0

�

2

mn+1
= t

2

n+1

�

2

�1
+ �

2

�0
+ �

2

✏

Furthermore, if �
1

, �
0

and ✏ are assumed normal, then mn+1

is normally distributed with the above
parameters.

While it is straightforward to obtain frequentist estimates of �
1

and �

2

�1
when we have already seen many

datapoints, we cannot estimate these quantities easily with only one or two datapoints. To mitigate this we
use Bayesian estimators, which are shaped by a prior distribution when only one or a few datapoints are
available, and shaped more by the data when more data becomes available. The conjugate prior for �

1

is
normal (assuming the mass sensor error parameter �✏ is already known) and is specified by hyper-parameters
µ�1

and �

2

�1
. The posterior distributions for �

1

is also normal, with variance and mean as follows:

�

2

�1
=

1
1

�2
�1

+ t1:n·t1:n
�2
✏

µ�1 = �

2

�1

 
µ�1

�

2

�1

+
t

1:n ·m
1:n

�

2

✏

!

We also assume that since �✏ is known, µ�0 is just the mean mass from the n previous observations, and
�

2

�0
= �

2

✏ /n. Using these parameters, we can then write the cost function as:

Cost(mn+1

, tn+1

|m
1:n, t1:n) = � log

h
N(mn+1

|µmn+1 ,�
2

mn+1
)
i
� log

⇥
N(tn+1

|tn + µ

�t,�
2

�t)
⇤

(5)

where N(x|µ,� 2) is the normal density function evaluated at x with mean µ and variance �

2. Examples
of this cost function for simulated cells are shown in Supplementary Figure 4, demonstrating how this cost
function narrows as more and more data is observed.

In sum, the cost depends on the new data (mn+1

, tn+1

), the previously observed data (m
1:n, t1:n), and

five user-defined parameters:

parameter description
� sensor RMS error
µ�1

prior expectation for mean mass accumulation rate
�

2

�1
prior expectation for mass accumulation rate variance

µ

�t expected average time between sensors
�

2

�t expected variance in time between sensors

Additionally, there is one more parameter for the cost of a gap, yielding six parameters in total controlling
the matching process.

It is worth note that by simply choosing the best matching between the previously-observed cells and
the newly-observed peaks at every step, we do not properly take into account uncertainty in the matching
process. While we have not undertaken this task here, future work to do so may utilize Murty’s algorithm
[9] to obtain not only the optimal assignment (as provided by the Hungarian algorithm), but a ranked set
of the best assignments (e.g. the top 50 assignments). This would allow one to check which assignments are
tenuous and which are very certain.
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Note 4: Comparison of measurement precision between SMRs and quantitative

phase microscopy (QPM)

Comparisons of SMR and QPMmass measurements cannot be made directly because the two methods exploit
di↵erent physical principles. QPM requires computing an unwrapped phase shift function from image data
to yield optical thickness. Optical thickness is integrated over the area of a cell, and the result is multiplied
by a constant to convert it into dry mass units. The constant is based on an average refractive increment of
mostly globular proteins [10]. On the other hand, SMR measurements are based on the change in resonant
frequency of an oscillating cantilever caused by a cell passing through an embedded microfluidic channel.
The frequency shift is divided by a sensitivity constant (Hz/pg) to obtain buoyant mass. The sensitivity
constant is a device parameter and independent of the properties of the analytes. It is obtained by direct
calibration with particles of known buoyant mass.

Supplementary Figures 13A and 13C show mass measurements of E.coli cells with similar interdivision
times made by QPM (left panel) and SMR (right panel). The left panel shows dry mass versus time for three
E. coli cells measured by Mir et al. using QPM [3]. Buoyant mass versus time for 11 E. coli cells measured
by SMR is shown on the right. Buoyant mass error for these cells is 0.22 fg, based on repeat measurements
of a single inert polystyrene particle similar in size and density to these cells (1.36 µm diameter, 1.05 g/mL).
One way to compare the precision of the two methods is to convert the SMR buoyant mass to dry mass.
This is possible using a method we validated in a previous study [11]. Briefly, we measured the buoyant
mass of E. coli cells in two fluids with di↵erent densities. The first fluid was a standard phosphate-bu↵ered
saline solution. The second fluid was identical to the first, except the water in the formula was replaced by
heavy water (D

2

O). Using the method of Archimedes, we found the density of E. coli biomass (E. coli ’s dry
density) to be 1.45 g/mL. This constant can be used to convert buoyant mass to dry mass, as shown on
the right axis in Supplementary Figure 13C. The conversion produces good agreement between the E. coli
dry mass obtained by the two methods. Converting buoyant mass error to dry mass error yields an error of
0.63 fg, approximately 30 times smaller than values produced by QPM.

Another way to assess the precision of the two methods is to compare the relative uncertainties of both
techniques. Because they are unitless, relative uncertainties can be compared directly. In Mir et al. [3],
measurements of a ⇠1.5 pg cell dry mass have a standard deviation of ⇠0.0196 pg, yielding a relative
uncertainty of 1.3%. SMR measurements of similarly-sized cells with an average buoyant mass around 0.3 pg
have a standard deviation of 0.20 fg, or 0.06% relative uncertainty, about 20 times better precision than
QPM. Both the dry mass conversion and relative uncertainty approaches give similar values.

We also find that serial and single SMR measurements of mass accumulation rates exhibit less varia-
tion than those measured by QPM. Supplementary Figures 13B and 13D compare mass accumulation rate
measurements obtained by QPM and SMR. The left panel (Supplementary Figure 13B) shows dry mass
accumulation rate (referred to as growth rate) vs. dry mass of 20 cells measured in reference [3]. Supple-
mentary Figure 13D shows two analogous datasets produced by the SMR method - one taken with a single
SMR device at low throughput and another taken on a serial SMR array with a higher flow rate.

How does the noise of the single SMR compare to the serial SMR array results shown in Figure 6 and
Supplementary Figure 13? The uncertainty in SMR buoyant mass measurements depends on the flow rate
of cells through the device. By varying the flow rate, the system can be optimized for throughput or
measurement precision. The noise level in the serial SMR array measurements (Figure 6) is about 3 times
higher than the single SMR in Supplementary Figure 13C because of the faster flow rate. This could be
reduced at the expense of lower throughput.
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