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Dynamic compartmental computations in tuft
dendrites of layer 5 neurons during motor behavior
Yara Otor1†, Shay Achvat1†, Nathan Cermak1, Hadas Benisty2, Maisan Abboud1, Omri Barak1,
Yitzhak Schiller1, Alon Poleg-Polsky3*, Jackie Schiller1*

Tuft dendrites of layer 5 pyramidal neurons form specialized compartments important for motor learning
and performance, yet their computational capabilities remain unclear. Structural-functional mapping of
the tuft tree from the motor cortex during motor tasks revealed two morphologically distinct populations
of layer 5 pyramidal tract neurons (PTNs) that exhibit specific tuft computational properties. Early
bifurcating and large nexus PTNs showed marked tuft functional compartmentalization, representing
different motor variable combinations within and between their two tuft hemi-trees. By contrast, late
bifurcating and smaller nexus PTNs showed synchronous tuft activation. Dendritic structure and
dynamic recruitment of the N-methyl-D-aspartate (NMDA)–spiking mechanism explained the differential
compartmentalization patterns. Our findings support a morphologically dependent framework for
motor computations, in which independent amplification units can be combinatorically recruited to
represent different motor sequences within the same tree.

C
ortical pyramidal neurons (PNs) typi-
cally possess an elaborate dendritic tree,
which serves to receive and integrate the
vast synaptic inputs arriving to the neu-
ron. In vitro and modeling studies have

established the role of passive, active, and mor-
phological properties of the dendritic tree in
information processing. Especially important
are local dendriticN-methyl-D-aspartate (NMDA)
and calcium spikes, which endow PNs with
the capability of performing multicompart-
mental parallel nonlinear computations, poten-
tially increasing the computational power and
storage capacity of PNs and ultimately of the
network (1–5).
In vivo evidence for local representation of

information in different tuft dendrites of layer
5 PNs is scarce (6, 7). Most reports show that
the vast majority of calcium signals are highly
correlated between different tuft branches,
apical dendrites, and soma of same neurons
(8–13), suggesting that the tuft and apical
branches function mostly as a single compart-
ment (14, 15). Thus, current literature presents
a puzzling gap between the powerful computa-
tional capabilities of these dendrites, as sug-
gested by in vitro andmodeling studies (1, 16–22),
and the much simpler computational scheme
emerging from in vivo experiments.
In most in vivo studies, little consideration

is given to the anatomical apical tuft structure

of the layer 5 PNs. Layer 5 PNs are composed
of two main anatomical subtypes that dif-
fer in their dendritic apical morphology:
thick-tufted pyramidal tract (PT) and slender-
tufted intra-telencephalic (IT) neurons (23–30).
Thick-tufted PTNs are further subdivided into
two distinct subtypes on the basis of their
nexus morphology and molecular markers
(23, 24, 26, 31, 32). Because the degree of
compartmentalization and electrical coupling
is strongly dependent on the dendritic mor-
phology (19, 33), we set out to examine motor
representation in tuft dendrites of these two
morphological types of thick-tufted layer 5
PTNs (24, 26) in the primary motor cortex
(M1) (28–30). We developed a comprehensive
experimental and analysis platform to reveal
the relationships between the detailed struc-
tural pattern and the behaviorally related
calcium activity.

Results

We imaged the activity of tuft dendrites from
single thick-tufted layer 5 PTNs in M1 fore-
limb cortex using two-photon calcium imaging
during two head-fixed behavioral paradigms:
a hand reach and grab for a food pellet (34)
and running on treadmill tasks (35) (Fig. 1, A
and B). We used the sparse labeling method
of adeno-associated virus (AAV) viral vectors
encoding two fluorescent proteins: GCaMP6
for recording the activity (36) and mRuby2
for reconstructing the morphology of the tree
(Fig. 1, C to F) with a high degree of certainty.
This resulted in the transfection of only a few
layer 5 PTNs in our field of view (Fig. 1E; see
materials and methods) and enabled us to
trace tuft dendrites to their parent soma with
high accuracy. Overall, we recorded 28 thick-

tufted layer 5 PTNs in 22 mice. We first re-
constructed the dendritic morphology from
the two-photon volumetric Z-stack (Fig. 1C).
We then used single-plane calcium imaging
(30-Hz frame rate) to simultaneously record
the activity of multiple dendritic tuft regions
of interest (ROIs) of the same neuron (Fig. 1, E
and F; on average, for each tree we sampled
from 80.4 ± 11% of the terminal branches).
These ROIs were aligned to the anatomical
tree structure using custom software (see
materials and methods).
Thick-tufted layer 5 PTNs are divided into

two main well-established subtypes on the
basis of their apical dendritic morphology
with early and late bifurcating apical trunk
(24, 26, 27). We used hierarchical clustering
to subdivide our thick-tufted layer 5 PTNs on
the basis of five morphological features (Fig. 1G
and fig. S1, A to E). Consistent with previous
studies, the clustering yielded two main sub-
classes: type 1, with early bifurcating apical
tuft and long nexus, and type 2, with late
bifurcating apical tuft and shorter nexus
(Fig. 1G and fig. S1, F to H). Retrograde viral
tracing of PTNs projecting to the medulla or
cervical spinal cord revealed that M1 cortico-
spinal PTNs yield a high proportion of type
1 dendritic morphology (fig. S1, I and J; 10 out
of 11 of neurons in four mice were classified as
type 1 neurons).
The two PTN subtypes demonstrated clear

differences in their tuft calcium signals recorded
during motor task performance. This was al-
ready apparent in the raw calcium imaging
traces of individual trials (Fig. 1H, fig. S2, and
movies S1 to S6). Type 1 thick-tufted layer 5
PTNs showed pronounced independent activ-
ity across their dendritic tuft branches (Fig. 1H
and fig. S2), both in branches belonging to
their right or left (R/L) tuft hemi-trees (Fig.
1H and fig. S2; division to left and right hemi-
trees defined as all descendants of the first
bifurcation branches) and within the hemi-
trees (Fig. 1H). By contrast, type 2 PTNs did
not show hemi-tree compartmentalization but
did showmore uniform dendritic tuft activation
across their entire tuft tree (Fig. 1H and fig. S2).
To quantitatively investigate the correla-

tions between the detailed tuft tree structure
and dendritic activity in type 1 and 2 PTNs,
we constructed and compared ROI distance
matrices on the basis of dendritic structure
and calcium activity. We obtained a structural
distance matrix of the tuft tree by measuring
the shortest path distance between all pair-
wise combinations of ROI locations, organized
according to the tree structure (Fig. 1I). Cal-
cium activity was extracted by identifying the
calcium events in each ROI for all trials with
the modified event detector MLSPIKE (37)
(materials and methods and fig. S3A).
Calcium event amplitudes exhibited a long-

tailed asymmetrical distribution (Fig. 1J and
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Fig. 2A). This raised the possibility of mul-
tiple subpopulations of calcium events. Indeed,
visual inspection suggested four qualitatively
distinct types of activation patterns in type
1 PTNs (single branch, subtree, hemi-tree, whole
tree; Fig. 1, H and I; Fig. 2B; and fig. S2). To
perform quantitative analysis of these differ-

ent event types, we subdivided the events into
four clusters according to either their average
amplitudes over all ROIs (see materials and
methods) or the number of activated ROIs
during each event (spatial activation extent)
using the k-means algorithm (average percent-
age of events in cluster 1 = 66%, cluster 2 =

17%, cluster 3 = 10%, cluster 4 = 8% of the
events; Fig. 1H, Fig. 2B, and figs. S2 and
S3). With the calcium activity vectors and
the structural distance matrix at hand, we
constructed a pairwise Pearson correlation
activity matrix arranged according to the
structural distance matrix for each of the
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Fig. 1. M1 contains two popu-
lations of thick-tufted layer-5
PTNs with distinct morpholo-
gies and functional proper-
ties. (A) (Top) Behavioral setup
for hand reach task. (Bottom)
An ethogram and histogram
annotating the behavior of
an expert mouse. (B) (Top)
Behavioral setup of head-fixed
mice running on a treadmill.
(Bottom) Example of velocity
(cm/s) over time (s). (C and
D) Z-stack of a single PTN acquired
in vivo and its three-dimensional
anatomical reconstruction.
(E) Single-imaging plane of a
GCaMP6s-positive layer 5 PTN’s
tuft dendrites. ROIs are marked
in yellow. (F) Schematics of
the tuft morphology; dots rep-
resent ROIs. Same neuron in (C)
to (F). (G) (Top) Hierarchical
clustering of thick-tufted layer
5 PTNs based on five morpho-
logical parameters. (Bottom)
Three example apical morpholo-
gies from each PTN type. Basal
and oblique dendrites are not
shown. Red numbers indicate
the corresponding neurons in
the clustering. (H) Calcium
events (DF/F heat map) in single
trials from the same three type 1
(left) and type 2 (right) PTNs
shown in (G), arranged by the
tree structure as indicated by
the dendrogram. (I) Illustration
of structure-activity correlations.
Schematic representation of a
layer 5 PTN with structural
distance matrix presented as a
heat map of the shortest path
distance between each two ROIs
(left) and illustrated activity
traces for ROIs (right upper
panel, dashed rectangles mark
events belonging to different
event clusters) and activity
matrix showing Pearson correla-
tion between ROI pairs
presented for all events and for
each event cluster (right lower
panel). (J) (Left) Normalized calcium events histogram from 21 neurons for type 1 (black) and type 2 (gray) PTNs. (Right) Event distribution color coded by event
cluster type for individual sessions in multiple neurons.
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four calcium event clusters and for all events
(Fig. 1, I and J).
We quantified the anatomical-functional

correlations using three measures: First, we

performed principal component analysis (PCA)
to embed the activity of each ROI across time
and trials into a two-dimensional space of the
two leading components that explain 84.42 ±

9.67% of the variance. Second, we used a
Mantel test (38–40), which quantifies the degree
of correlation between the functional activ-
ity and structural distance matrices. Third, we
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Fig. 2. Compartmentalized
activity in tuft dendrites of
type 1 thick-tufted layer 5
PTNs during running on
treadmill and hand reach.
(A) Calcium events histogram
from one type 1 PTN during
treadmill session. Arrows
indicate values separating the
four different event clusters.
(B) Examples of calcium
events (DF/F heatmap) from
the four event clusters in type
1 PTN. ROIs are arranged by
the tree structure as indi-
cated by the dendrogram,
shown on the left (R, green; L,
orange). (C) Two-dimensional
tree diagram (left) and the
corresponding structural dis-
tance matrix and dendrogram
(right) of a type 1 PTN. Dots
represent recorded ROIs.
(D) Two-dimensional PCA
embedding of all ROIs activ-
ity; each dot represents a
single ROI. (E) (Top) Matrices
showing pairwise Pearson
correlation coefficients com-
puted from the calcium
signals arranged by the tree
structure shown in (C).
(Bottom) Pearson correlation
values as a function of
shortest path distance fitted
with a linear regression
model. [(A) to (E)] Same
neuron and session. ROIs
compared within left hemi-
tree (orange); within right
hemi-tree (green) and
between R/L hemi-trees
(red). Black line represents
linear regression model fit.
(F to H) As in (C) to (E) for
a different type 1 PTN during
a hand reach session. (I to
M) Box plots of the following
parameters: Mantel statistics
comparing Pearson correla-
tion and structural distance
matrices (I), R2 of linear
regression model that pre-
dicted Pearson correlations
by distance (J), slope of linear regression model that predicted Pearson correlations by distance (K), R2 of linear regression model that predicted Pearson correlations
by distance calculated for the hemi-trees separately (L), and Z-score of the experimental Pearson correlations of within compared to between hemi-trees (mean
Pearsonwithin − mean Pearsonbetween) calculated in relation to the shuffled distribution (M). *p < 0.05, **p < 0.01, ***p < 0.001; blue asterisk, mean value. One-way
analysis of variance (ANOVA) with Tukey post-hoc test (12 neurons, 8 animals, 27 sessions).
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measured the relationship between the pair-
wise Pearson activity correlations to the distance
between ROIs with a linear regression (Fig.
2, C to H).
We first concentrated on type 1 PTNs. We

observed strong compartmentalization of the
tuft tree with a significant correlation between
the tree structure and calcium activity during
both motor tasks: hand reach and running on

treadmill. The first cluster, with the smallest
calcium event amplitudes, typically involved
correlated activity of individual or sister
branches (Fig. 2, E and H). For this cluster,
the Mantel statistics were relatively low (Fig.
2I), as was the linear correlation between the
Pearson values and dendritic distance (Fig. 2, J
to L, and fig. S4A; linear regression permuta-
tion test). For events with intermediate am-

plitudes corresponding to clusters 2 and 3, we
observed high correlation between the activity
and the tree structure, with strong compart-
mentalization of the tuft tree, ranging from
correlated activity mapped to secondary and
tertiary branches (event cluster 2; Fig. 2, C to
H) or entire hemi-trees (event cluster 3; Fig.
2, C to H). The strong correlation between
the anatomical and activity matrices in these
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Fig. 3. Homogeneous activity
in tuft dendrites of type 2
thick-tufted layer 5 PTNs
during running on treadmill
and hand reach. (A to K) As in
(C) to (M) of Fig. 2 for type
2 PTNs. *p < 0.05, **p < 0.01,
***p < 0.001; blue asterisk,
mean value. One-way ANOVA
with Tukey post-hoc test
(9 neurons, 9 animals,
25 sessions). (L) Pairwise
Pearson correlation coefficient
matrices computed for all cal-
cium events for type 1 (left)
and type 2 (right) PTNs.
(Bottom) Pearson correlation
values as a function of shortest
path distance fitted with a
linear regression model for all
events calculated for type
1 (left) and type 2 (right) PTNs.
Type 1 PTN as in Fig. 2, C to E,
and type 2 as in (A) to (C).
(M to P) Box plots are the same
as in (G) to (I) and (K) when all
calcium events are considered for
type 1 and type 2 PTNs.
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clusters resulted in higher Mantel statistics
(Fig. 2I) and a stronger dependence between
pairwise Pearson correlations and tuft den-
dritic distance (Fig. 2, E, H, and J to L, and
fig. S4A; linear regression permutation test).

Finally, for the largest-amplitude calcium
events (cluster 4), the activity was spread
throughout the entire tuft tree, and responses
in all ROIs were highly correlated (Fig. 2, E
and H). This was manifested as lower Mantel

statistics (Fig. 2I) and lower dependence of the
pairwise Pearson correlation values on den-
dritic distance (Fig. 2, E, H, and J to L, and fig.
S4A; linear regression permutation test). Even
in cluster 4 events, it is evident that some
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portions of the tree were more strongly cor-
related than others. Similar results were ob-
tainedwhen event clusteringwas based on the
spatial extent of calcium signals instead of
their averaged amplitude (fig. S5).
To further examine the R/L hemi-tree

segregation, we used two additional analysis
methods: First, we shuffled the “within” and
“between” tagging of ROI Pearson correla-

tion pairs while maintaining their pairwise
correlation coefficient values. We found the
experimental values of the difference between
the mean Pearson correlations of within com-
pared to between hemi-trees to be significantly
higher compared to the shuffled distribution
for all cluster events (Fig. 2Mand fig. S6, A and
C; Z-score >3.6). Second, we calculated the
proportion of the variance explained (R2) of

the calcium activity of each ROI in one hemi-
tree by the activity of all ROIs in the contra-
lateral hemi-tree using a linear regression
model. The results further indicated compart-
mentalization of activity in the hemi-trees in
clusters 1 to 3 (fig. S7A).
To facilitate the comparison between type

1 and type 2 PTNs, we also divided the events of
type 2 PTNs into four clusters. The distributions
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Fig. 5. Modeling the contribution of
the behavioral predictors to cal-
cium activity of type 1 and type
2 PTNs using a generalized linear
model (GLM). (A) Goodness of fit
(R2) of GLM full model for each ROI
from a type 1 PTN during a hand
reach session. (B) Mean relative
contribution of modeled ROIs (R2

>15%) for each of the behavioral
predictors for right and left hemi-
trees. Black asterisks on both graphs
indicate values computed from
somatic recordings of same neuron.
(C) Structural distance matrix. ROIs
with R2 < 0.15 were excluded.
(D) Pairwise Pearson correlation
between the GLM relative contribution
vectors for all included ROI pairs,
arranged by the tree structure.
(E) Pearson correlation values shown
in (D) as a function of shortest path
distance fitted with a linear regression
model. (F to J) As in (A) to (E) during
running on a treadmill. Same neuron
in (A) to (J). (K to T) As in (A) to (J)
for an example type 2 PTN. (U) (Left)
Frequency of ROI’s R2 values of GLM
full model for type 1 PTNs (10
animals, 14 neurons, 31 sessions).
(Right) As in left panel for type 2
PTNs (9 animals, 10 neurons, 31
sessions). (V to X) Box plots of the
following parameters: R2 linear
regression model that predicted the
Pearson correlations of GLM relative
contribution vector by dendritic dis-
tance (V), Mantel statistics comparing
the structural distance matrix and the
behavioral-correlation matrix (W),
Pearson correlation between the
soma’s behavioral relative contribu-
tions and those of the tuft, for
type 1 and type 2 PTNs (seven and
four neurons, respectively) (X). ***p <
0.001; blue asterisks, mean value.
Wilcoxon rank test.
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of peak calcium events and the peak calcium
amplitudes of the clusters were comparable
in type 1 and 2 PTNs (fig. S3, C and D). Type 2
PTNs did not show significant correlations
between their tree structure and functional
calcium activity for any of the calcium event
clusters (Fig. 3 and figs. S4B and S7, B to E),
and compartmentalization between their R/L
hemi-tree was low (figs. S6, B and C, and S7A).

Thus, for type 2 PTNs except cluster 1, calcium
events globally involved the entire tuft tree, con-
sistent with previous reports in visual, anterior
lateral motor (ALM), and somatosensory cor-
tices (8–11). The differences in the structure-
function correlations between type 1 and type 2
PTNswere not related to the cluster subdivision.
They were also evident when the analysis was
performedon thewhole event population (Fig. 3,

L to P). However, in type 1 PTNs, the subdivision
into the four clusters highlighted more details
because using the entire population averaged
events with different spatial activation patterns.
Plotting Mantel statistics as a function of

nexus size for individual neurons, we found a
clear distinction between the two PTN sub-
classes despite the variability in sizewithin both
groups SupportVectorMachine (SVM)accuracy 1,

Otor et al., Science 376, 267–275 (2022) 15 April 2022 7 of 9

Fig. 6. Simulation of type 1 PTN
explains in vivo activity by apical
morphology and NMDA spikes.
(A) Examples of the temporal
distribution of simulated pseudo-
random synaptic activation
patterns for the four event clusters
in one trial. Top trace, the total
number of activated synapses over
time. (Right) The corresponding
spatial input distribution and post-
synaptic calcium signal (shown on
a logarithmic scale). The average
number of recruited synapses for
each event cluster was 34 ± 13,
48 ± 13, 60 ± 15, and 84 ± 29.
(B) The distribution of the simulated
evoked calcium events in the tuft
dendrites of the reconstructed type
1 PTN. (C) Representative calcium
activity in different simulation
trials, arranged by the tree struc-
ture as indicated by the dendro-
gram, left. (D) (Top) Pairwise
Pearson correlation coefficients
computed from the tuft calcium
signals arranged by the tree struc-
ture. (Bottom) Pearson correlation
values as a function of shortest
path distance fitted with a linear
regression model (black). (E) The
normalized number of tuft den-
drites with NMDA spikes (blue) and
the fractional NMDAR conductance
(brown) for all event clusters. Error
bars: SD. (F) As in (D), for tuft
voltage correlations. (G) As in (D),
in the absence of VGCC in the
nexus. (H) As in (D), when the
morphology of the tuft was
reduced to match the extent of the
tuft dendrites in type 2 PTNs
shown in fig. S13A. (I) As in (H), for
tuft voltage correlations. Color
coding: orange and green represent
data from the left and right hemi-
trees, respectively. Red, compari-
son between R/L hemi-trees.
Simulations for this figure are for
the neuron in Fig. 2, C to E.
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chance 0.52 for both clusters). This finding
further strengthens the anatomical subdivision
based on independent physiological parame-
ters (fig. S7F).
We next investigated the relationship be-

tween tuft tree and somatic activation using
quasi-simultaneous imaging of tuft and soma
(~10-Hz acquisition rate). For type 1 PTNs,
we observed that events encompassing the
full tuft or restricted to an entire hemi-tree
were invariantly associated with somatic acti-
vation in all (100%) events examined. For
events encompassing only part of a hemi-
tree, somatic activation was proportional to
the percentage of active ROIs (Fig. 4, A to D).
In type 2 PTNs, somatic activationwas propor-
tional to the extent of ROI recruitment in the
entire tree (Fig. 4, E and F). The tuft activity
was critically dependent on NMDA receptor
(NMDR) channels because local injection of
theNMDARblockerMK801 close to the imaged
tuft blocked both tuft and somatic activity
(fig. S8).
Next, we investigated the possible func-

tional importance of tuft compartmentaliza-
tion. For both type 1 and type 2 PTNs, the
activity in tuft dendrites strongly correlated
with motor behavior (fig. S9). To evaluate
the preferential selectivity of responses for
specific behavioral variables in the different
tuft dendrites in individual neurons, wemodeled
the calcium transients using a generalized linear
model (GLM) (Fig. 5 and fig. S10A; seematerials
and methods) (34, 41, 42). For both type
1 and type 2 layer 5 PTNs, the activity in tuft
dendrites was strongly related to individual
motor variables. The GLM effectively modeled
the calcium activity of both hand reach and
running on treadmill behavioral events (Fig.
5). On average, for type 1 and type 2 PTNs,
the full GLM successfully modeled the ROIs
activity, achieving explained variance >0.15
in 77.5 and 63.8% of ROIs for the hand reach
task and 56.5 and 73% of ROIs for the tread-
mill task, respectively (Fig. 5U).
For type 1 PTNs, representation was not

uniform throughout the tuft for either hand
reach or treadmill behaviors. We observed a
differential representation of motor variables
in the different tuft tree segments (Fig. 5, A
to J and V to W, and fig. S10B). The largest
nonuniformity was typically observed between
the R/L tuft hemi-trees with different com-
binations of motor variables preferentially
encoded by each of the two hemi-trees acti-
vity (Fig. 5, A to J, and fig. S10B). However,
we also could observe dendrites within each
hemi-tree, which were tuned to different com-
binations of motor variables (fig. S10B). To
quantify the spatial compartmentalization
of motor variables representation within and
between the hemi-trees of single type 1 PTNs,
we performed pairwise Pearson correlations
between the GLM selectivity vectors of the dif-

ferent ROIs (Fig. 5, D, E, I, and J, and fig. S10B).
Overall, type 1 PTNs demonstrated a corre-
lation between the pairwise Pearson correla-
tion coefficient of the GLM selectivity vectors
and the distance between ROIs (Fig. 5, A to J
and V). Consistently, we observed a significant
correlation between the tuft distance matrix
and GLM vector matrix for both behavioral
data (Fig. 5, V and W). The significance of R/L
segregation was further examined by com-
paring our experimental Pearson correlations
between R/L hemi-trees to randomly distrib-
uted ROIs (1000 permutations). Experimen-
tal Pearson values between R/L hemi-trees
were significantly smaller compared with the
permutated values (Z-scores of −2.94 ± 2.6;
p values were <0.05 in 80% of cases). More-
over, when we plotted the Pearson correlation
matrices of peri-behavioral event time segments
for different behavioral events, we foundmarked
differences in the dendritic compartmentali-
zation between different behavioral events for
both tasks (fig. S11), further indicating differ-
ential spatial dendritic representation of var-
ious motor events.
By contrast, GLM analysis for type 2 PTNs

revealed a more uniform encoding of motor
variables along the tuft and only minimal
correlation to the tuft tree structure (Fig. 5,
K to T). Although the GLM vectors for the
different ROIs of the same single neuron
were not completely identical, we did not
observe systematic differences between or within
the hemi-trees (Fig. 5, V and W; comparison
of experimental and permutated random
ROI locations yielded Z-scores of −0.47 ± 1.72;
p values were <0.05 in 27% of cases; p < 0.01
comparing between Z-scores of type 1 and
type 2 PTNs, Wilcoxon rank test).
To understand the impact of the differen-

tial tuft activity on the output of type 1 and
type 2 PTNs, we performed tuft and soma
imaging from the same neurons. We hy-
pothesized that the combined computational
products of the hemi-trees will affect the rep-
resentation of motor variables at the soma.
Indeed, GLM modeling of the somatic ac-
tivity revealed a composite tuning that re-
flected the summed representation of both
hemi-trees for type 1 and 2 PTNs (Fig. 5, B
and L, and fig. S12). We found high Pearson
correlation coefficients between the GLM
vectors of the R/L tuft ROIs and the corre-
sponding somas for type 1 and even more so
for type 2 PTNs (Fig. 5X).
To further investigate the mechanisms

underlying the observed activity in vivo,
we performed modeling experiments on
reconstructed type 1 and type 2 PTNs using
the neuron platform (Fig. 6). We activated
the tuft tree with pseudorandom patterned
inputs (Fig. 6, A to C) and in vivo–like acti-
vation frequencies (43, 44). Compatible with
our in vivo results, we could readily observe

R/L hemi-tree separation and compartmen-
tal calcium responses within hemi-tree tuft
branches in a type 1 (Fig. 6C; compare Fig.
6D and Fig. 2, C to E, and movies S7 to S10;
same neuron as in Fig. 2, A to E) but not in
type 2 PTNs (fig. S13; same neuron as in Fig.
3, A to C). However, the in vivo results showed
a higher intercorrelation within terminal sub-
trees for clusters 2 and 3 events, probably
reflecting a nonrandom input distribution
on the tuft tree in vivo (fig. S14, A and B). The
simulated voltage correlation matrices also
captured the main features of the tuft tree
segmentation (Fig. 6F). Yet, the voltage signals
showed higher correlations than the calcium
signals, reflecting the localized calcium influx
to the synaptic sites (via NMDAR) and the high-
pass filtering effect of voltage-gated calcium
channels (VGCCs) [see also Lavzin et al. (45)].
Next, we used our simulations to charac-

terize the nature of the calcium event clusters.
In type 1 PTNs, the four clusters differed pri-
marily in the degree of recruitment of the
NMDAR spiking mechanism (Fig. 6E). In
type 2 PTNs, massive and widespread recruit-
ment of NMDA spikes already occurred in
cluster 2 events (fig. S13, D andH). Consistent
with the critical role of NMDAR spikingmech-
anisms in replicating the in vivo findings,
simulations with AMPAR-only synapses (Fig.
6B) failed to generate significant tuft activa-
tion (46). These results agree with our exper-
imental demonstration of a marked reduction
in the calcium activity of tuft dendrites after
NMDAR blockade (fig. S8). We then inves-
tigated the contribution of VGCCs to tuft
compartmentalization in type 1 PTNs. Elimi-
nation of VGCCs from the nexus had little im-
pact on tuft segmentation, except for cluster 4
events, where removal of VGCCs increased
R/L hemi-tree segmentation (Fig. 6G). Taken
together, our simulations show that tuft seg-
mentation is primarily dependent on dif-
ferential recruitment of NMDAR spiking
mechanisms in different tuft branches, and
VGCCs play a minimal role in this process.
Because we could replicate the major char-

acteristics of our experimental results with
pseudo-random input patterns in both type
1 and 2 PTNs, we hypothesized that the distinct
degrees of tuft segmentationmust be linked to
the difference in dendritic morphology, espe-
cially nexus size. To investigate this hypothe-
sis, we scaled down the size of the apical arbor
of the type 1 PTN but kept the soma-tuft dis-
tance unchanged. Under these conditions, we
observed a sharp reduction in the segmenta-
tion within and between the hemi-trees (Fig. 6,
H and I). This conclusion is further supported
by our voltage simulations, which show that
dendritic independence was primarily driven
by the sizable electrotonic distance along the
nexus (fig. S14C) and by the decreased NMDAR-
dependent nonlinear interactions as a function
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of the distance betweendendritic locations, with
onlyminimal interactionsbetween the two hemi-
trees [fig. S14D; see also Kerlin et al. (11)].

Discussion

Overall, our results reveal a subclass of thick-
tufted layer 5 PTNs in M1 (type 1) that per-
forms parallel independent representations
of motor information within its tuft den-
drites. The degree of tuft compartmentaliza-
tion was primarily dependent on the nexus
and tuft tree morphology and required the
NMDA spiking mechanism. In these neurons,
motor information is integrated and ampli-
fied via NMDA spikes within adjustable seg-
ments of the tuft, ranging from small tertiary
and quarterly sister branches, independent R/L
hemi-trees, and up to a single global computa-
tional compartment in the minority of events.
Our modeling suggests that calcium spikes play
only a minimal role in tuft compartmental-
ization and local amplification. Instead, the
initiation of calcium spikes in the distal apical
trunk and proximal nexus branches probably
serves to further amplify the tuft computa-
tional products (46, 47).
Type 2 PTNs also amplify behaviorally

relevant motor information within their tuft
but in a more global manner, mostly func-
tioning as a single computational compart-
ment (8–11).
The type 1 subclass constitutes a sizable

fraction of thick-tufted layer 5 PTNs (~40%), in
line with previous reports (24, 26). Although
we based our classification solely on the apical
dendritic morphology, our physiological find-
ings supported this classification. Studies
that examined both dendriticmorphology and
projection targets suggest that type 1 PTNs
may preferentially project to the medulla
(23, 27, 32), which is consistent with our
medulla and spinal cord retrograde-labeled
PTNs. Further studies are required to exam-
ine the projection pattern and molecular
markers of type 1 and 2 PTNs (23, 32).
Our results reconcile the differences in the

findings of prior in vitro andmodeling studies,
which predicted the capacity of dendrites to
compartmentalize information (4, 17, 22, 48, 49)
and recent recordings from behaving mice,
which show that tuft dendrites function primar-
ily as a single global amplification unit (8–11).
Several past studies also observed infrequent
local spikes that were limited to small, non-
overlapping dendritic segments in tuft den-
drites (9–11). Yet, this highly localized spiking
activity, reminiscent of our cluster 1 events,
cannot serve for efficiently communicating
tuft computations to the soma. It may be used
for local plasticity instead (6, 21). A study (6)
that recorded tuft dendrites of M1 layer 5
PTNs reported spatially isolated dendritic
spikes in almost all pairs of sibling distal tuft
branches (95%). The results of this study dif-

fer from ours, as we observed selective acti-
vation of sibling terminal tuft branches during
both motor tasks infrequently (<5%). These
results are especially surprising in the case of
type 2 layer 5 PTNs, which should have also
been observed in that study. The discrepancies
between our findings and those of (6) were
probably related technical issues such as the
low acquisition rate and the lack of adequate
sparse labeling in (6).
The R/L hemi-tree compartmentalization

is perhaps one of the most distinctive and
intriguing properties of type 1 PTNs, which
was not anticipated from previous work. This
hemi-tree tuft compartmentalization enables
PTNs to represent different sets of informa-
tion in parallel, with each hemi-tree routing
information to the soma independently acting
as “a neuron within a neuron.” It is conceivable
that in larger and more complex primate and
human PTNs, this property would have an even
larger impact, with a greater number of almost
isolated integrative zones in the tuft (50, 51).
On the basis of our data, we propose a new

integration and representation scheme of
motor variables in tuft dendrites of M1 layer
5 PTNs. Motor variables are not represented
in fully compartmentalized, small, nonover-
lapping dendritic segments as previously
reported (6). Instead, a given motor behavior
or a sequence is represented by the activation
of a specific combination of distal tuft seg-
ments, which are mutually coamplified via
NMDA spikes to form spatial dendritic am-
plificationmaps for different motor behaviors.
In this framework, the tuft tree of type 1 layer
5 PTNs is capable of dynamic combinatorial
representation of a large number of motor
variables and sequences within the same
dendritic tuft branches (2, 52, 53).
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Methods 

Experimental model 

All animal procedures were performed in accordance with guidelines established by the NIH on 

the care and use of animals in research, as confirmed by the Technion Institutional Animal Care 

and Use Committee. Adult C57BL mice were used in this study. Animals were housed in a 12:12 

hours reverse light:dark cycle. For behavioral training and experiments, food intake was limited to 

2.8–3 g/day with ad libitum water.  

Surgical preparation 

Surgical procedures were performed under isoflurane anesthesia (4% for induction and 1.5-2% 

during surgery). Mice aged 8-12 weeks were anesthetized and secured in a stereotaxic apparatus. 

A heat pad was used to maintain body temperature at 36-37 °C. The scalp was shaved and cleaned 

with iodine solution and ethanol. The skull surface was exposed after a subcutaneous injection of 

2% Lidocaine. A small circular craniotomy (2.5 – 3 mm diameter) was performed for viral 

injections over the primary motor cortex forelimb area 0.6 mm anterior and 1.6 mm lateral to 

Bregma, defined by optogenetic inhibition as described previously (34). For sparse labeling of 

layer-5 PTNs, we injected a mixture of a diluted AAV carrying Cre recombinase either under the 

CamKII promoter (AAV1-CamKII0.4-Cre-SV40; Addgene viral prep # 105558-AAV1, final titer 

roughly 1.8e8 genome copies per milliliter) or under the PT promoter (AiP1010-pAAV-mscRE4-

minBGpromoter-iCre-WPRE-hGHpA; Addgene plasmid # 163476 (54)) and a concentrated AAV 

carrying flexed GCaMP6s and mRuby2 (AAV1-CAG-Flex-mRuby2-GSG-P2A-GCaMP6s-

WPRE-pA; Addgene viral prep # 68717-AAV1, titer roughly 1e13 genome copies per milliliter) or 

flexed GCaMP6f and mRuby2 (AAV1-CAG-Flex-mRuby2-GSG-P2A-GCaMP6f-WPRE-pA; 

Addgene viral prep # 68719-AAV1, titer roughly 1e13 genome copies per milliliter). 50nL of the 



virus mixture was injected using a hydraulic micromanipulator (M0-10 Narishige) at several sites 

within the craniotomy at 750 µm below dura. After the injections, an optical window constructed 

from a 2.5 mm and 3.5mm 170 µm thick circular glass disks glued together was placed over the 

exposed brain and superglued in place. A custom-made 3D printed headpost (34) was affixed to 

the skull using dental cement. 

Injections of ketoprophen (5 mg/kg) and buprenorphine (0.1 mg/kg) were administered 

subcutaneously for analgesia during surgery and for 2-days post operation. Mice recovered for at 

least one week following surgery with ad libitum food and water. 

Retrograde spinal cord and medulla labeling of PTNs 

For spinal cord retrograde labeling of PTNs, we performed a laminectomy at C2-C3 level and  

injected contralaterally a mixture of  AAV-retro viruses: pENN.AAV.hSyn.Cre.WPRE.hGH 

(diluted to titer 0.9e10), pAAV-FLEX-tdTomato (titer 2.6e13) and pGP-AAV-CAG-FLEX-

jGCaMP7s-WPRE (titer 1.1e13)  through the dura, lateral to the midline at depths 800 µm, 600 µm 

and 400 µm from dura. For medulla retrograde labeling of PTNs, same viruses were injected to 

the contralateral medulla (0.9 ML, 6.6 AP) at depths 4.6 mm and 5 mm from the dura. Neurons 

were reconstructed from M1 region.      

Pharmacological blocker application  

For experiments with local injection of pharmacological blockers, we used a cranial window with 

a drilled access hole sealed with biocompatible silicone (55). The blockers were injected using a 

hydraulic micromanipulator with a glass pipette that was inserted into the cortex with an angle to 

reach the specific imaged region of interest, typically at a vertical depth of ~150 µm from dura. 

Approximately 500 nl of MK801 (80 µM) was injected. The experiments started 5 min after the 

injection of the blocker and lasted for 30 min. This duration was chosen based on the estimated 



half-time clearance rate of the drugs, determined from analysis of the fluorescence decay of Alexa 

fluor-594, which is a similar-sized water-soluble.  

Behavioral training 

For the hand reach experiments, mice were restricted to 2.8–3 g/day of food with ad libitum water. 

Training started when the animals reached 85-90% of their original body weight. Mice were 

habituated to head fixation in a custom-built apparatus (34) in dark and quiet conditions, monitored 

by a webcam. Mice were initially trained to retrieve food pellets (14 mg; Test Diet; St Louis, MO) 

from a rotating plate placed directly below the mouth. The plate was rotated every 45 sec using 

either a NI USB DAQ device or a Teensy microcontroller driven by custom-made LabVIEW 

software to present a food pellet. An auditory tone (200 ms, 1 kHz) was used as a cue during plate 

rotation. Mice were trained until they routinely responded to the auditory cue and grabbed the food 

pellet with at least 50% success rate (34); thereafter behavior was combined with two-photon 

imaging. We took care to reproduce the location of the pellet across sessions. 

For the treadmill experiments, head-fixed mice were trained to run freely on a linear treadmill 

(Luigs & Neumann) positioned under the microscope. Treadmill belt motion was recorded during 

imaging via a rotary encoder. Mice typically learned to initiate running on treadmill within a single 

30 min training session.  

Treadmill position and two-photon recordings were synchronized by recording the two-photon 

imaging frame trigger signal, simultaneously with the treadmill encoder on a single machine using 

either an NI USB DAQ device or a Teensy microcontroller. 

Two-photon calcium imaging 

Images were acquired using a two-photon microscope (Bruker 2P-Plus) equipped with a dual-

beam Insight X3 laser (Spectra Physics), an 8 kHz bidirectional resonant galvo scanner and a 



Nikon 16X CFI Plan Fluorite objective (NA 0.8), controlled by the software package PrairieView 

5.3. Fluorescence was split by a 565LP dichroic and filtered with 525/70 and 595/50 bandpass 

filters before collection on two GaAsP photomultiplier tubes (Hamamatsu H10770PB-40 and 

H11706-40, respectively) to image the red (mRuby2) and green (GCaMP6) fluorescent markers. 

For single plane imaging, the imaging region was ~400 x 400 µm, either 512x512 pixels at a frame 

rate of 30 Hz or 768x768 pixels at a rate of 20 Hz. For quasi-simoultanouse two plane soma-tuft 

imaging, we used an electrically tunable lens (ETL), and the imaging region was ~400 x 400 µm, 

512x512 pixels at ~ 10Hz acquisition rate. Illumination was centered at a wavelength of 940 nm 

with 30-40 mW mean power at the objective. PMT gains were set to minimize saturated pixels 

during calcium transients. For the hand reach experiments, each trial lasted for 12 sec with the tone 

and plate rotation introduced 4 sec after the start of the trial. Inter-trial intervals were typically 30 

sec, and a total of 50-120 trials were collected per session. Behavioral performance was monitored 

at 200 Hz using two cameras (side and front view; Flea3 FL3-U3-13Y3M, PointGrey). For the 

treadmill experiments, to minimize photobleaching, we acquired images in segments of 30 sec 

followed by an inter-acquisition interval of 15 sec. The total imaging period was 30 min per 

session.  

Two-photon dendritic structural imaging   

For structural imaging, head-fixed mice were anaesthetized with 1-2% isoflurane and placed over 

a heat pad to maintain body temperature. We recorded large field of view volumetric z-stacks (750 

x 750 µm, 1536 x 1536 pixels, 3 µm axial spacing for tuft and 10 µm for apical regions) of mRuby2 

fluorescence using 1045 nm two-photon illumination with Galvo scanners at a 10 µsec dwell time 

per pixel. 

Quantification and statistical analysis 



Unless otherwise specified, the data were analyzed using custom Matlab, R, or Python scripts. 

Behavioral data analysis 

We used both a modified version of the Janelia Automatic Animal Behavior Annotator (JAABA) 

software package (56) to classify behavioral events and machine-learning-based algorithm 

DeepLabCut (57), to automatically track the hand position from our behavioral videos. For 

behavioral annotations using JAABA software, the hand reach task was segmented into discrete 

behavioral events (lift, grab, supination, at mouth and back to perch). A subset of trials was 

manually labeled to train the classifier to recognize the behavioral events of interest. Then, 

machine-learning-based classified behavioral events were extracted from all trials. The events 

were defined as follows: lift is defined from the initial separation between hand and perch until the 

hand reaches maximum height, grab is defined from the beginning of fingers closure until the hand 

was lifted off the table (with or without the pellet), supination is defined when the paw starts 

rotating until it faces upward, at mouth is defined as the hand with a pellet in close proximity to 

mouth, back to perch was the downward movement of the paw. 

Success trials were defined as trials where mice succeeded in grabbing and bringing the food pellet 

to the mouth for consumption (regardless of how many grab attempts were made). Failure trials 

were defined as trials where mice attempted to grab but missed the food pellet and thus did not 

consume it.  

On each trial, X and Y locations of the hand were automatically extracted from the videos of the 

side and front cameras using DeepLabCut (57), where a small subset of video frames was 

automatically extracted for training the software.  

For treadmill experiments, movement information was extracted from the belt motion via a rotary 

encoder. 



Two-photon data analysis 

The fluorescence data acquired by the two-photon microscope were first registered to correct for 

brain motion artifacts. Our registration method was based on Fienup, J. & Kowalczyk (58), using 

Fourier transform-based correlation between two successive images. The maximal value position 

in the correlation image specifies the relative shift between the two images; we designate them ut 

and vt. This method required a template specification and matching against an image stack. The 

template image 𝐼𝑡𝑒𝑚𝑝(𝑥, 𝑦) was defined as the average of all images in the selected trial over time. 

𝐼𝑡𝑒𝑚𝑝(𝑥, 𝑦) =
1

𝑁
∑ 𝐼(𝑥 − 𝑢𝑡 , 𝑦 − 𝑣𝑡, 𝑡)𝑡=1..𝑁                                      (1) 

The set {𝑢𝑡, 𝑣𝑡}, 𝑡 = 1. . 𝑁 is an image shifted in the XY plane after alignment. We initially started 

with ut=0, vt=0 and then updated their values according to the registration maxima. This procedure 

was repeated several times. In each iteration, when each time we computed a new template 

𝐼𝑡𝑒𝑚𝑝(𝑥, 𝑦) using previously computed {𝑢𝑡, 𝑣𝑡} for each image. Typically, this procedure 

converges after several iterations, in our case three iterations. 

To align the imaging data over many trials, we used a similar technique, utilizing the previously 

computed averaged templates for each trial. For each trial k, we performed a single trial registration 

using the template algorithm for three iterations. To align the image data over many trials, we 

treated the final templates 𝐼𝑡𝑒𝑚𝑝
𝑘 (𝑥, 𝑦) from each trial k as unaligned image data and repeated the 

same registration procedure to find offsets {𝑢𝑘, 𝑣𝑘} for each trial. These offsets, along with 

previously found offsets {𝑢𝑡, 𝑣𝑡}, account for the final image shift in the XY plane. 

Regions of interest (ROIs) were detected manually using average fluorescence images and ΔF/F 

projection images, which highlighted active neurons. The pixels within each ROI were averaged 



for every frame. The ROI "mask" was used to detect the same neurons on multiple imaging 

sessions on different days. 

ΔF/F was computed using the following formula:   

 ∆𝐹 𝐹⁄ 𝑛
[𝑡] =  

𝐹𝑛[𝑡]−𝑀𝑖𝑛10(𝐹𝑛[𝑡])

𝑀𝑖𝑛10(𝐹𝑛[𝑡])+𝐵𝑖𝑎𝑠
                      (2) 

Min10(𝐹𝑛 [𝑡]) is a mean value of the lowest consecutive 10% values of the fluorescence signal 

𝐹𝑛 [𝑡]. This minimal fluorescence value was calculated both per trial and across the entire 

experimental session, with no significant differences in the results with these two calculation 

variants. A small bias factor in the denominator prevented division by zero when the cell was 

completely silent.  

Care was taken to include in the analysis only dendritic ROIs which were in focus with the imaging 

plane as determined by the red channel. On average, we sampled a similar percent of terminal 

branches from type-1 and type-2 PTNs (81.1±11% and 80.1±0.01; p=0.84 for type-1 and type-2 

PTNs respectively). The average SNR of the calcium fluorecense signal was 7.5±2.9 dB and 

8.2±2.6 dB for type-1 and type-2 PTNs respectively (p=0.17). 

 

Structural Organization Analysis 

Morphological Reconstruction of Cells. Our sparse transfection method resulted in only few 

layer-5 PTNs in each field of view (~ 400 x 400 µm; on average 1.6±0.85 neurons, n=28 animals). 

We used the Simple Neurite Tracer plugin in Fiji software to reconstruct the entire tuft and apical 

dendrite morphology up to the soma. Basal and oblique dendrites were not reconstructed fully due 

to insufficient resolution; hence they were not depicted on the figures. NeuroAnatomy Toolbox 

v1.5.2 was used to align the imaged ROIs onto the reconstructed tuft tree structure.  



Hierarchical clustering. We used 5 anatomical measures to cluster the thick-tufted layer-5 PTNs 

(hierarchical clustering linkage function with Ward): Nexus size (the summed distance between 

first and second bifurcations of the two primary tuft branches); First bifurcation depth from pia; 

Second bifurcation depth from pia, right branch; Second bifurcation depth from pia, left branch; 

Soma depth from pia. The number of clusters was validated using the internal clustering validation 

Calinski-Harabasz index and was consistent with the number of 2. 

Structural distance-matrix. Based on the reconstructed data, we represented each cell as a tree 

structure reflecting the anatomical hierarchy, where nodes are branches and end-points and edges 

reflect dendritic branch points, weighted by the length of each branch (Euclidian distance in X-Y-

Z plane). To obtain a matrix of distances between ROI’s, we evaluated the pairwise distances 

between ROIs of each cell as the shortest Euclidian path (in µm) on the tree for traveling from one 

node to another, organized according to the tree structure.  

Event detection and clustering. For each ROI, all trial repetitions in a session were concatenated 

into a single time trace denoted by 𝑥𝑖(𝑡), where 𝑖 = 1,2, … ,𝑁 enumerates the ROIs and 𝑡 stands 

for time samples. Calcium transients (ΔF/F) were detected using a modified MLSpike software 

(37). Using the MLSpike software, we identified dendritic events by the shape of the events (abrupt 

increase and gradual reduction of the ΔF/F). In contrast to somatic action potentials, dendritic 

spikes are graded and not composed of single or multiple unitary events. Thus, we did not 

transform the calcium data to spike trains. Our detector defined calcium transients as single events 

as long as the ΔF/F did not decrease by at least 25% of the peak amplitude. The reliability of event 

detection was validated with human-based detection in several experiments. 

To classify the calcium transients in the different ROIs to different clusters by their peak, we 

assigned each transient to a specific “calcium event” by the average peak across all ROIs. We 



defined all calcium transients occurring simultaneously as belonging to the same “event”. The 

average calcium signal trace was calculated by the mean values (over time) across the calcium 

signals in all ROIs. The peak amplitude of each calcium event was classified according to the peak 

of the average calcium trace in the corresponding time window. For each experiment, we used the 

k-means algorithm to divide our events to 4 clusters based on these peak amplitudes. A second 

method we used to sort the calcium events to the 4 clusters was according to the number of ROIs 

which were active during each event, thus directly determining the spatial extent of the dendritic 

activation.  

Events correlation matrix. We constructed a correlation matrix related to each calcium event 

cluster as follows: we extracted the activity in the time window from the onset to the peak of the 

events from all ROIs belonging to that cluster. These events were concatenated to a vector across 

time to obtain 𝑋𝑘, a matrix of 𝑁 × 𝑇𝑘 where 𝑇𝑘 is the number of the total time samples extracted 

for cluster 𝑘. We evaluated the Pearson correlation between all pairwise combinations of ROIs 

(per neuron) resulting in an 𝑁 × 𝑁 matrix. We sorted the rows and columns of these matrices 

according to the ROIs order in the tree to obtain an activity correlation matrix and to produce a 

scatter plot of pairwise Pearson correlation values vs. the shortest physical path.  Correlations were 

calculated only for events that occurred at least in one of the ROIs. 

 

Statistical Analysis  

Structural-functional correlations.  

2D PCA embedding of calcium signals.  All calcium events were concatenated for each ROI, 

resulting in an 𝑁 × 𝑇 matrix denoted as 𝑌,comprising the activity of 𝑁 ROIs in 𝑇 time samples.  



We used principal component analysis (PCA) to represent each ROI in a lower dimensional space 

with respect to the temporal axis. We evaluated the sample covariance of 𝑌 by 

 𝐶 = 𝑌𝑇𝑌                          (3) 

and applied eigenvalue decomposition 

                                                             𝐶𝜈𝑙 = 𝜇𝑙𝜈𝑙                                                                

                                                             𝑙 = 1, . . . , 𝑇                                                           (4) 

where 𝑣𝑙 are the eigenvectors with the associated 𝜇𝑙 eigenvalues. The eigenvectors of the sample 

covariance give rise to the principal components of the imaging data matrix 𝑌 with respect to the 

temporal axis. 

We used the first two principal components (related to the largest eigenvalues) of each ROI, 

(𝜈𝑙(1), 𝜈𝑙(2)), 𝑛 = 1, . . . , 𝑁, to visualize the ROIs in a two-dimensional principal component (PC) 

space. 

Hemi-tree compartmentalization. We estimated the significance of R/L hemi-tree segregation 

of the Pearson correlation values using shuffling of the within and between hemi-tree labels. For 

each experiment, we calculated the difference between the mean pairwise Pearson correlations of 

within compared to between hemi-trees ROIs (Meanwithin-Meanbetween). Next, we shuffled the 

“within” and “between” labels of each pair-wise Pearson correlation coefficient value over 1000 

perturbations and calculated the Z-score of the experimental values from the shuffled distribution. 

 Mantel Test. To test the degree of similarity between the structure of the tree and its activity, we 

performed a Mantel test (38) between the structural and the event correlation matrices for each 

cluster. We used 5,000 permutations to estimate the null distribution and p-values.  



Goodness of fit - R2  and slope for the linear regression model. To quantify the correlation 

between activity and distance between the ROIs in the tree, we calculated the R2 of the Pearson 

values as a function of tree distance with a linear regression where we predict Pearson values using 

a single (distance) predictor model (glmfit in Matlab). The significance of R2 was calculated using 

1,000-fold shuffles (permutations) of the dendritic distance values. The p-value was the proportion 

of permutated R2 which was greater than the experimental value.  

The slope was calculated using the linear prediction model after normalizing the maximum 

distance value to 1 for each tuft tree. 

ANOVA Test. We used one-way ANOVA to compare between four event clusters for R2 entire 

tree, R2 hemi-tree, the slope of the linear regression and Mantel values. We performed post hoc 

analysis using Tukey-Kramer correction to measure between-group significance.  

Wilcoxon test. A-parametric independent sample Wilcoxon test (ranksum in Matlab) was used for 

evaluating the statistical significance between type-1 and type-2 PTNs for each cluster for the 

following: R2 of Pearson linear regression in the entire tuft tree, R2 in each hemi-tree, slope of the 

linear regression and Mantel values. 

Generalized linear model.  

Hand reach analysis - we modeled single ROI calcium transients using a generalized linear model 

(GLM)(34, 41, 42) based on behavioral variables serving as predictors.  

The predictors were of four types: 

1. Hand trajectories. Time series of hand trajectories were extracted using DeepLabCut (57) from 

videos taken with side and front view cameras. We extracted X and Y hand positions, 

altogether 4 predictors. 



2. Orofacial features. Time series of orofacial motion variability features were extracted using 

FaceMap (59) from recorded videos. Facial movements were extracted from a single region 

covering the face for each view (side and front) and from each area the first 20 principal 

components were taken as predictors (34). Higher-order components had significantly lower 

relevance to behavioral and neuronal signals.  

3. Time varying and binary events: tone, lift, grab, supination, at mouth and back to perch. The 

hand reach task was photographed using two high-speed video cameras (front and side view) 

and movement events were extracted using the modified JAABA software (56). 

4. A whole trial binary event: success/failure trial outcome. 

To model the time course of single-ROI calcium signals, we convolved the time-varying binary 

events with sets of 7 degrees-of-freedom regression splines generated using the ‘bSpline’ package 

in R. We used three sets of spline functions to account for different temporal durations (0.25, 0.5, 

2 sec). We used 24 spline functions in total, which resulted in 24 X 6 = 144 convolved signals used 

as predictors. Altogether we had 189 predictors (144 convolved predictors + 4 hand trajectories + 

40 orofacial features + 1 whole binary success/failure outcome status). We performed the analysis 

on a time window starting from 0.1sec before the tone to 3 (for well-trained mice) or 6 sec after 

the tone. 

We trained a linear predictor for the neuronal activity of an ROI 𝑖 based on the time traces of the 

predictors such that  

    

(

 
 

𝑥𝑖,1
𝑇

𝑥𝑖,2
𝑇

⋮
𝑥𝑖,𝑇
𝑇

)

 
 
= 𝐴𝑊𝑖 + 𝑤𝑖

0 + 𝜀𝑖                                                      (5) 



where 𝑥𝑖,𝑘
𝑇  is the time trace of neuronal activity of the i-th ROI on trial 𝑘, 𝐴 is composed of the 

corresponding temporal predictor signals and {𝑤𝑖, 𝑤𝑖
0} are the evaluated model parameters. Our 

recordings of GCaMP neuronal signals, according to our empirical evaluations, reasonably match 

a normal distribution. Therefore, the link function required for the GLM is a unity function, rather 

than a logarithm function usually used for modeling spikes as Poisson processes. All models were 

trained per ROI using LASSO with 5-fold cross validation. Our data was somewhat better fitted 

by inverse Gaussian distribution and thus, we also performed the GLM analysis with the inverse-

square link function. The fit of the GLM model with the experimental results was comparable 

using either Gaussian or inverse Gaussian distribution. 

We first trained a full model based on all 189 predictors and measured 𝑅𝑓
2(𝑖), which is the variance 

of the estimated neuronal signal, divided by the variance of the recorded neuronal activity. For our 

further analysis, we included the subset of ROIs having at least 15% of their variance explained 

by the full model and excluded the rest from further analysis. 

In order to quantify the relative contribution of each variable, we grouped the predictors into 9 

categories: hand trajectories, orofacial features, tone, lift, grab, supination, at mouth, back to perch 

and outcome. We trained a set of nine partial models, each by excluding predictors related to one 

of the categories. The contribution of the excluded component was evaluated as:   

                                          𝛼(𝑖, 𝑐) = 1 −
𝑅𝑝
2(𝑖,𝑐)

𝑅𝑓
2(𝑖)

𝑐 = 1,… ,9                                  (6) 

where 𝑅𝑝
2(𝑖, 𝑐) is the variance of the explained signal of the i-th ROI using the partial model c=1,2 

…,9.  

For some ROIs, the contribution was negative, indicating poor modeling due to noise or 

irrelevance of the predictors to the activity and therefore, the value was cropped to zero (41). The 



relative contribution, 𝛼 (𝑖, 𝑐) (∑ 𝛼(𝑖, 𝑐)9
𝑐=1 )⁄  of each component c, averaged across ROIs in the 

hemi-trees. 

Treadmill analysis – to quantify the contribution of behavioral variables to neuronal activity for 

treadmill experiments, we used a different set of predictors extracted from the belt motion via a 

rotary encoder.  

 Continuous variables - position 𝑥(𝑡), speed,  𝑣(𝑡), acceleration 𝑎(𝑡). We also included 

𝑣2, 𝑣3, 𝑎2, 𝑎3 to allow non-linear modeling between speed/acceleration and neuronal 

activity.  

 Time-varying binary events - locomotion, quiescence, positive/negative acceleration and 

locomotion onsets and offsets.  

To account for delays between binary evens and calcium signal onset, we inserted built-in delays 

of ±0.5sec between the behavioral and imaging traces. To account for the time course of calcium 

transients, we convolved the binary traces using three sets of spline functions with a duration of 

0.25, 0.5 and 2 sec, similar the hand reach task. Overall, we used 7 continuous predictors + 6 binary 

traces × (2 delays + 24 spline functions) resulting in 163 predictors. GLM modeling was performed 

in the same manner as described for the hand-reach task, on locomotion and quiescence segments 

separately. Cross validation was performed by arbitrarily dividing the running/quiescence traces 

into 30 sec long trials. 

Single neuron computer simulations 

We used detailed morphological reconstructions of three neuronal morphologies to investigate the 

rules underlying the in vivo activity in tuft dendrites of the type-1 and -2 layer-5 PTNs. We 

converted the fluorescent z-stacks that were acquired in vivo to a morphometric format for multi-



compartment modeling using the NEURON 7 simulation platform. The locations of the 

experimental ROIs were saved and recreated in the simulation. 

We constrained the range of the passive and active parameters in the simulation by the key features 

of thick-tufted layer-5 PTNs as reported in previous slice studies including: the degree of 

attenuation of voltages from tuft to nexus and from nexus to tuft (46, 60), the propagation of 

voltage and spread of calcium transients from nexus to the soma (9, 46, 60); the attenuation of 

calcium transients to the tuft evoked by nexus calcium spikes; the attenuation of voltage between 

the hemi-trees in type-1 PTNs (46).  

Passive properties - The passive and active parameters were adapted from (45). The somatic 

resting membrane potential was set to -60 mV; membrane resistance to 20,000 Ω·cm2; the axial 

resistance was 80 Ω·cm, and the membrane capacitance was set to 1.4 µF/µm2.  

Active conductances along the dendritic tree - Active conductances were distributed as follows: 

Axon: HH-like sodium channel 50000 pS/µm2; HH-like potassium channel 8000 pS/µm2; KDR 

10000 pS/µm2. Soma: HH-like sodium channel 50 pS/µm2; HH-like potassium channel 600 

pS/µm2; KDR 300 pS/µm2; KA 1000 pS/µm2; KM 20 pS/µm2.  The apical trunk: HH-like sodium 

channel 50 pS/µm2; CaL 1 pS/µm2; HH-like potassium channel 100 pS/µm2; KDR 60 pS/µm2; KA 

1000 pS/µm2; KCa 1 pS/µm2. Apical tuft dendrites and basal dendrites: HH-like sodium channel 

40 pS/µm2; CaL 0.4 pS/µm2; KDR 1 pS/µm2; KA 30 pS/µm2; KCa 10pS/µm2. IH was inserted in 

the tuft dendrites with 10pS/µm2 conductance. Apical sodium channels had a 10mV increase in 

the activation and deactivation kinetics. Nexus: was set as the dendritic region from first to second 

bifurcation with CaL 10 pS/µm2.  



The simulation included radial calcium diffusion in shells with buffers and longitudinal diffusion 

along the branches with a coefficient of 0.8 µM2/ms. Calcium pumps operated on the external 

shell, with a steady-state calcium concentration maintained at 100 µM.  

We calibrated the active conductance in the type-1 morphology to recreate the firing pattern and 

responses to dendritic stimulation recorded in vitro (45, 46). Nexus excitability was set to be 

sufficiently high to generate calcium spikes by dendritic current injection but not by a single back-

propagating action potential. Tuft excitability was calibrated to restrict the propagation of nexus 

calcium spike back to the tuft. In simulations where we scaled down the nexus and tuft 

morphologies, we also increased the peak VGCC conductance value in the nexus proportionally 

by the change in dendrite length to maintain an invariant total calcium channel conductance. 

Synapses - We simulated excitatory (AMPAR, NMDAR) and inhibitory (GABAAR) synapses that 

reversed at 0 mV and -65 mV, respectively. AMPAR and GABAAR currents had an instantaneous 

rise time and a decay time of 2 and 7 ms. NMDAR currents had a rise time of 2 ms and a decay 

time of 50 ms. The voltage dependence of the NMDAR conductance was modeled as follows: 

gNMDA=1/(1+0.25·exp(-0.08·Vm)) where Vm is the local membrane potential. The fractional 

NMDAR conductance was measured as the average gNMDA value during each event. The 

fractional calcium conductance of the NMDARs was set to 0.01.  

We used stimulation and background synapses. Background activity was implemented with 80 

synapses (80% excitatory with synapse conductance = 0.7 nS, mean firing rate = 1 Hz; 20% 

inhibitory with synapse conductance = 1 nS, instantaneous rise time and a decay time of 7 ms, 

reversal potential of -65 mV and mean firing rate = 1 Hz) which were activated at random times 

and locations on the entire tuft and nexus region and were driven by a temporal pseudorandom 

pattern. 



Pseu-dorandom activation: For simulations with a pseu-dorandom distribution of the signal-

conveying synapses, we selected the number of active synaptic sites from a lognormal distribution 

with mean=60, SD=30. Synaptic size was chosen from a lognormal distribution with 

mean=SD=0.7 nS for both NMDA and AMPA receptors. The activation rate of these inputs 

increased and decreased over time by a Gaussian temporal envelope which specified their average 

firing rate at each time point. Presynaptic spiking rates rose from baseline (1 Hz) and peaked at 

750 ms from the start of the trial to allow for stabilization of the simulation. The value for the peak 

was selected at random for each synapse to be either 20, 30 or 40 Hz. The temporal width of the 

synaptic activation (measured as the SD of the Gaussian) was 150 ms. The active synapses were 

reseeded with a unique spatiotemporal distribution pattern and conductance values for each 

simulation trial. Synaptic distribution over the arbor was achieved by drawing a random location 

from a uniform distribution mapped to the total dendritic length.  

Patterened activation: In some simulations, we preferentially activated groups of preselected 

branches. Signal-conveying synapses were distributed either equally on all branches of a hemi-

tree or preferentially distributed on same or neighboring terminal tuft branches. In patterned 

activations, synaptic strength was set to 0.7nS. The temporal presynaptic firing sequence for 

patterened activations was similar for all inputs, unique in each simulation run, and structured as 

described above, with a Gaussian envelope peaking at 40Hz firing rate. 

Morphological alterations: Scaling down type-1 nexus and tuft: we shrunk the length of the nexus 

in our simulation by a factor of 6.82 and the length of all tuft branches by a factor of 2 to match 

the nexus/tree size of the simulated type-2 PTNs. In this manipulation, the length of the apical 

trunk was increased by 345 µm to maintain the total vertical size of the apical arbor.   



 



Fig. S1. Anatomical parameters of apical dendrites.   

(A-E) Histogram of the following parameters (in µm): soma depth from pia (A), first bifurcation 

depth from pia (B), nexus length calculated as the summed distance between first and second 

bifurcations of the two primary tuft branches (C), second bifurcation depth from pia, first hemi-

tree (D), second bifurcation depth from pia, second hemi-tree (E). (F-H) Box plots of the following 

parameters: nexus length (F), first bifurcation depth from pia (G) tuft length calculated as the sum 

of all tuft branchs excluding main apical and nexus (H). * p<0.05, ** p<0.01, *** p<0.001, 

asterisks represent mean value, Wilcoxon rank test. (I) Retrogradely labled PTNs in M1 from 

medulla. (J) As in (I) from spinal cord (C2-C3 level). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Fig. S2. Example calcium imaging traces for type-1 and type-2 PTNs. 

(A) ΔF/F traces of 2 example type-1 PTNs, same neurons as in Fig. 1H, left. ROIs are arranged by 

the tree structure as indicated by the dendrogram, left (R, green; L, orange) (B) As in (A) for type-

2 PTNs, same neurons as in Fig. 1H, right.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Fig. S3. Calcium events detection. 

(A) Example activity (ΔF/F) traces of 3 ROIs from the same tuft tree in a single session. Asterisks 

represent detected calcium events color coded by event cluster type. (B) Mean activity (ΔF/F) 

traces across all tuft ROIs sampled from the same neuron in a single session as in (A). (C) calcium 

events histogram for 21 type-1 and 2 PTNs. PTN (D) The mean (±SD) normalized event amplitude 

per cluster for type-1 (left) and type-2 (right) PTNs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S4. Shuffling of dendritic distance significantly reduces R2 of linear regression fit in type-

1 but not type-2 PTNs.  

(A) Distribution of linear fits of the pair-wise Pearson coefficient per event cluster as a function of 

shuffled dendritic distances of the ROI pairs (1,000 permutations) for type-1 PTNs. Arrow 

indicates the experimental R2 values. P value for the examples are indicated in parentheses and 

those across experiments (12 neurons, 8 animals, 27 sessions) are indicated in each panel on top 

(B) As in (A) for type-2 PTNs (9 neurons, 9 animals, 25 sessions).  

 

 

 

 

 

 



 

 

 



Fig. S5. Pearson’s correlation matrices calculated for events clustered by spatial dendritic 

activation extent. 

(A) Left, two-dimensional tree diagram of an example type-1 PTN. Dots represent recorded ROIs. 

Right, the structural distance-matrix and dendrogram of the same neuron in the left panel. Same 

example as in Fig. 2C-E. (B) Two-dimensional PCA embedding of all ROIs activity (same neuron 

as in A), each dot represents a single ROI. (C) Top, matrices showing pairwise Pearson correlation 

coefficients computed from the calcium signals arranged by the tree structure shown in (A) during 

the same session as in (B). Bottom, Pearson correlation values as a function of shortest path 

distance fitted with a linear regression model. (D-F) As in (A-C) for a type-2 PTN during running 

on treadmill session (same neuron as in Fig. 3A-C). Orange dots, ROIs compared within left hemi-

tree; green dots, ROIs compared within right hemi-tree; red dots, ROIs compared between R/L 

hemi-trees. Black line represents linear regression model fit. (G-I) Box plots of the following 

parameters: Mantel statistics comparing Pearson correlation and structural distance-matrices (G), 

R2 of linear regression model that predicted Pearson correlations by distance (H), slope of linear 

regression model that predicted Pearson correlations by distance (I). For all box plots purple 

represents type-1 and green represents type-2 neurons. * p<0.05, ** p<0.01, *** p<0.001, asterisks 

represent mean value, Wilcoxon rank test. (Type-1, 12 neurons, 8 animals, 27 sessions; type-2, 9 

neurons, 9 animals, 25 sessions). 

 

 

 

 

 



 

Fig. S6. Shuffling of within and between hemi-tree labels shows significant hemi-tree 

compartmentalization in type-1 but not type-2 PTNs.  

(A) Distribution of Meanwithin-Meanbetween Pearson coefficient of shuffled within and between 

labels per event cluster (1,000 permutations) for type-1 PTNs. Arrows indicate the experimental 

value. Z-score value for the example is indicated in parentheses. (B) As in (A) for type-2 PTNs. 

(C) Box plots of Z-score of the experimental Pearson correlations of within compared to between 

hemi-trees (Meanwithin-Meanbetween) in relation to the shuffled distribution. * p<0.05, ** p<0.01, 



*** p<0.001, asterisks represent mean value, Wilcoxon rank test (type-1, 12 neurons, 8 animals, 

27 sessions; type-2, 9 neurons, 9 animals, 25 sessions).  



 



Fig. S7. Statistical comparison between activity of type-1 and type-2 PTNs.  

(A) Calculation of the proportion of the variance explained (R2) of the calcium activity of each 

ROI in one hemi-tree by the activity of all ROIs in the contralateral hemi-tree using a linear 

regression model for the four cluster events and the two PTN types. (B-E) Box plots of the 

following parameters: Mantel statistics for comparison between distance and activity matrices (B), 

linear regression model R2 of Pearson correlations as a function of dendritic distance (C), linear 

regression model slope of Pearson correlations as a function of dendritic distance (D), and linear 

regression model R2 of Pearson correlations as a function of dendritic distance within hemi-tree 

(E). (F) Mantel statistics as a function of nexus size for cluster 2 events (left) and cluster 3 events 

(right). * p<0.05, ** p<0.01, *** p<0.001, asterisks represent mean value, Wilcoxon rank test. 

(Type-1, 12 neurons, 8 animals, 27 sessions; type-2, 9 neurons, 9 animals, 25 sessions). 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S8. The NMDAR blocker, MK801, eliminates the calcium activity in tuft dendrites of 

layer-5 PTNs.  

(A) Examples of calcium activity (ΔF/F) traces in different ROIs of the same tuft for a control 

session (left) and after intracortical injection of MK801 [80 µM] (right). Blue lower trace shows 



the average activity of all ROIs. (B) As in (A) for a different neuron. Bottom, mean activity trace 

across ROIs. (C-D) Examples of somatic calcium activity (ΔF/F) for a control session (left) and 

after intracortical injection of MK801 [80 µM] (right) for two neurons. (E) Examples of calcium 

activity (ΔF/F) traces in different ROIs of the same tuft with intracortical saline injection (left), 

followed by intracortical injection of MK801 (80 µM) (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S9. Calcium activity is correlated to motor behavior in type-1 and 2 PTNs.  

(A) Top, ΔF/F traces from an example type-1 PTN during a running on treadmill session. Bottom, 

velocity trace. (B) As in (A) for an example type-2 PTN. (C) Top, mean ΔF/F traces from an 

example type-1 PTN during a hand reach task session. Each black line represents mean activity 



across all ROIs in a single trial. Blue line represents mean activity across ROIs and trials. Bottom, 

peri-event histogram of the behavioral events over time (sec) from the same behavioral session. 

(D) As in (C) for an example type-2 PTN.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Fig. S10. Examples for GLM model fit and relative contribution of modeled ROIs.  

(A) Examples of 4 modeled ROIs from the same neuron in the same session. Top, in vivo recorded 

data. Bottom, GLM prediction model. (B) The relative contribution for each of the modeled ROIs 

from the same neuron in a single session as in (A) and in Fig. 5A-E for each of 9 behavioral 

predictors (see legend) composing the full model. R2 shown above each graph is the full model 

value. Color coded by R/L hemi tree (Right, green; left, orange). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Fig. S11. Peri-behavioral event Pearson correlation matrices for type-1 PTNs. (A) Top, 

matrices showing pairwise Pearson correlation coefficients computed from the calcium signals 

that appear during different specific behavioral time windows arranged by the tree structure 

(shown in left) during a treadmill session. Behavioral events (rest, positive and negative 

acceleration) are indicated above each panel.  Bottom, Pearson correlation values as a function of 

shortest path distance fitted with a linear regression model. (B) As in (A) for a second neuron 

example. (C-E) Box plots (arranged by the magnitude) of the following parameters: R2 of linear 

regression model that predicted Pearson correlations by distance (C), slope of linear regression 

model that predicted Pearson correlations by distance (D), Mantel statistics comparing Pearson 

correlation and structural distance-matrices (E). To allow averaging between neurons the 

behavioral events were ranked according to their magnitude. (F-J) as in (A-E) for hand reach task. 

Behavioral events (lift, grab, supinate, at mouth, back to perch). * p<0.05, **p<0.01, *** p<0.001, 

blue asterisk, represents mean value for each event cluster. One-way ANOVA with Tukey post-

hoc test between event clusters (for treadmill, 6 neurons, 5 animals; for hand reach, 5 neurons, 5 

animals). 

 

 

 

 

 

 

 

 



 

Fig. S12. Correlations between somatic and tuft GLMs modeling the contribution of the 

behavioral predictors to calcium activity.   

(A) The mean relative contribution of the behavioral predictors for all recorded tuft ROIs for a 

type-1 PTN during hand reach task session (left), and for the corresponding soma (middle). Right, 

the relative contribution of each behavioral predictor for the soma as a function of the same mean 

behavioral predictor for the tuft ROIs. Black line represents linear fit model. (B) As in (A) for an 

example type-1 PTN during running on treadmill session. (C-D) As in (A-B) for an example type-

2 PTN.  

 

 

 



 

 



Fig. S13. Correlated tuft tree activity in simulated type-2 PTNs.  

(A) Simulation of a type-2 PTN with a relatively large tuft tree (same neuron as in Fig. 3A). Left, 

side view, right, structural distance-matrix (B) Top, matrices showing pairwise Pearson correlation 

coefficients computed from the calcium signals arranged by the tree structure as indicated by the 

dendrogram shown in (A). Bottom, Pearson correlation values as a function of shortest path 

distance, fitted with a linear regression model. (C) As in (B), for voltage correlations. (D) The 

percent of tuft dendrites with NMDA-spikes (blue) and the fractional NMDAR conductance 

(brown) for all event clusters. (E-H) As (A-D) for a second example type-2 PTN with a smaller 

tuft. 



 



Fig. S14. Modeling the mechanisms of type-1 PTN hemi-tree compartmentalization.  

(A) Pearson Correlation matrices between simulated calcium signals on tuft dendrites of a type-1 

PTN for each of the event clusters. The tuft was stimulated with synaptic inputs contacting 

dendrites non randomely favoring contacts in same and neighboring dendrites (see methods). Top, 

correlation matrix, bottom, Pearson correlation values as a function of shortest path distance fitted 

with linear regression. (B) Representative examples for changes in the internal calcium (left) and 

voltage (right). (C) Example of a simulated calcium spike propagation confined to a single hemi-

tree. Top, calcium spike was initiated by current injection at a second bifurcation (arrow). The 

spread of voltage (bottom, left) and calcium (bottom, right) signals was measured along the nexus 

(green, orange) and the main apical trunk (black) at the time point marked by the asterisk. Arrows 

on the bottom plot represent the first (black) and the second (green, orange) bifurcations. (D) 

Voltage and current interactions as a function of dendritic distance. Varying levels of synaptic 

input conductance (composed of AMPA and NMDA receptors) were activated on a terminal 

branch marked by the red dot (left) to produce the sigmoidal input-output relation, typical of an 

NMDA-spike (right). Synaptic input was paired with a current-clamp injection in one of three 

locations: a neighboring branch within the sub-tree (purple arrow), a terminal dendrite that shared 

a common second bifurcation (blue arrow), and a tuft branch on the second hemi-tree (black 

arrow). The current amplitude was increased between trials to create a family of input-output 

curves for each of the cases (top, right, bottom). Electrical interactions of different degrees were 

evident between sister branches on the same hemi-tree but were absent between hemi-trees. 

Simulated neuron for all panels as in Fig. 2C. 
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